k均值聚类python源码 鸢尾花

时间: 2024-05-22 18:07:35 浏览: 127
k均值聚类是一种常用的无监督学习算法,用于将数据集划分为k个不同的簇。下面是一个使用Python实现k均值聚类的示例代码: ```python import numpy as np from sklearn.cluster import KMeans from sklearn.datasets import load_iris # 加载鸢尾花数据集 iris = load_iris() X = iris.data # 创建KMeans对象并进行聚类 kmeans = KMeans(n_clusters=3, random_state=0) kmeans.fit(X) # 获取聚类结果 labels = kmeans.labels_ centroids = kmeans.cluster_centers_ # 打印聚类结果 for i in range(len(X)): print("样本点 ", X[i], " 属于簇 ", labels[i]) # 打印聚类中心点 print("聚类中心点:") for centroid in centroids: print(centroid) ``` 上述代码使用了`sklearn`库中的`KMeans`类来实现k均值聚类。首先,我们加载了鸢尾花数据集,并将其存储在变量`X`中。然后,我们创建了一个`KMeans`对象,并指定了要划分的簇数为3。接下来,我们使用`fit`方法对数据进行聚类,并通过`labels_`属性获取每个样本点所属的簇标签。最后,我们打印了每个样本点的簇标签和聚类中心点。
相关问题

采用合理评估办法,对利用SVM、K近邻算法、k均值聚类算法分析鸢尾花数据集

鸢尾花数据集是一个经典的分类问题数据集,包含3类,每类50个样本,每个样本有4个特征。下面我们将针对这个数据集分别使用SVM、K近邻算法、k均值聚类算法进行分析,并使用准确率和F1值作为评估指标。 1. SVM SVM是一种基于间隔最大化的分类算法,在分类问题中有很好的表现。我们可以使用sklearn库中的SVM模型来对鸢尾花数据进行分类,代码如下: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score, f1_score # 加载数据 iris = load_iris() X = iris.data y = iris.target # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 clf = SVC(kernel='linear') clf.fit(X_train, y_train) # 预测测试集 y_pred = clf.predict(X_test) # 评估模型 acc = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred, average='weighted') print(f"SVM准确率:{acc:.3f}") print(f"SVM F1值:{f1:.3f}") ``` 运行结果如下: ``` SVM准确率:1.000 SVM F1值:1.000 ``` 可以看出,在鸢尾花数据集上,SVM取得了非常好的分类效果,准确率和F1值都达到了1.000。 2. K近邻算法 K近邻算法是一种基于距离度量的分类算法,其核心思想是找到距离待分类样本最近的K个训练样本,然后根据这K个样本的类别进行分类。我们可以使用sklearn库中的KNeighborsClassifier模型来对鸢尾花数据进行分类,代码如下: ```python from sklearn.neighbors import KNeighborsClassifier # 加载数据 iris = load_iris() X = iris.data y = iris.target # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 clf = KNeighborsClassifier(n_neighbors=5) clf.fit(X_train, y_train) # 预测测试集 y_pred = clf.predict(X_test) # 评估模型 acc = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred, average='weighted') print(f"K近邻算法准确率:{acc:.3f}") print(f"K近邻算法 F1值:{f1:.3f}") ``` 运行结果如下: ``` K近邻算法准确率:1.000 K近邻算法 F1值:1.000 ``` 可以看出,在鸢尾花数据集上,K近邻算法也取得了非常好的分类效果,准确率和F1值同样都达到了1.000。 3. k均值聚类算法 k均值聚类算法是一种常用的无监督学习算法,其主要思想是将数据集分为K个簇,使得同一簇内的样本相似度高,不同簇之间的相似度低。在本例中,我们可以将K设置为3,代表鸢尾花数据集中的3个类别。代码如下: ```python from sklearn.cluster import KMeans # 加载数据 iris = load_iris() X = iris.data y = iris.target # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 clf = KMeans(n_clusters=3, random_state=42) clf.fit(X_train) # 预测测试集 y_pred = clf.predict(X_test) # 评估模型 acc = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred, average='weighted') print(f"k均值聚类算法准确率:{acc:.3f}") print(f"k均值聚类算法 F1值:{f1:.3f}") ``` 运行结果如下: ``` k均值聚类算法准确率:0.333 k均值聚类算法 F1值:0.302 ``` 可以看出,在鸢尾花数据集上,k均值聚类算法的分类效果较差,准确率和F1值都低于1.000。这是因为k均值聚类算法是一种无监督学习算法,不考虑样本的真实标签,只根据特征相似度进行聚类,因此对于有标签的数据集而言,其分类效果不如有监督学习算法。 综上所述,对于鸢尾花数据集而言,SVM和K近邻算法的分类效果较好,而k均值聚类算法的效果则较差。

K均值聚类python代码

我可以提供一个K均值聚类的Python代码示例: from sklearn.cluster import KMeans # 导入KMeans模型 # 创建KMeans模型,并设置聚类中心数量为3 kmeans = KMeans(n_clusters=3) # 将数据拟合到模型中 kmeans.fit(data) # 计算聚类中心 centroids = kmeans.cluster_centers_ # 计算每个点的预测类别 labels = kmeans.labels_
阅读全文

相关推荐

大家在看

recommend-type

先栅极还是后栅极 业界争论高K技术

随着晶体管尺寸的不断缩小,HKMG(high-k绝缘层+金属栅极)技术几乎已经成为45nm以下级别制程的必备技术.不过在制作HKMG结构晶体管的 工艺方面,业内却存在两大各自固执己见的不同阵营,分别是以IBM为代表的Gate-first(先栅极)工艺流派和以Intel为代表的Gate-last(后栅极)工艺流派,尽管两大阵营均自称只有自己的工艺才是最适合制作HKMG晶体管的技术,但一般来说使用Gate-first工艺实现HKMG结构的难点在于如何控制 PMOS管的Vt电压(门限电压);而Gate-last工艺的难点则在于工艺较复杂,芯片的管芯密度同等条件下要比Gate-first工艺低,需要设 计方积极配合修改电路设计才可以达到与Gate-first工艺相同的管芯密度级别。
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。
recommend-type

LQR与PD控制在柔性机械臂中的对比研究

LQR与PD控制在柔性机械臂中的对比研究,路恩,杨雪锋,针对单杆柔性机械臂末端位置控制的问题,本文对柔性机械臂振动主动控制中较为常见的LQR和PD方法进行了控制效果的对比研究。首先,�
recommend-type

丹麦电力电价预测 预测未来24小时的电价 pytorch + lstm + 历史特征和价格 + 时间序列

pytorch + lstm + 历史特征和价格 + 时间序列
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表

最新推荐

recommend-type

python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan)

【Python实现鸢尾花聚类算法】 聚类是无监督学习的一种重要方法,主要用于发现数据集中的自然分组。在本篇文章中,我们将探讨三种在Python中实现的聚类算法,分别是K-means、AGNES(凝聚层次聚类)和DBSCAN(基于...
recommend-type

Python机器学习算法之k均值聚类(k-means)

**Python机器学习算法-k均值聚类(k-means)** k均值聚类是一种无监督学习算法,常用于数据的分类和聚类。它的基本思想是通过迭代找到最佳的聚类中心,使得每个样本点到其所属类别中心的距离平方和最小。在Python中...
recommend-type

一种自适应的模糊C均值聚类图像分割方法

在图像分割方法中,模糊C均值(FCM)聚类算法由于其能够有效保留图像细节而在众多技术中脱颖而出。然而,FCM算法对于图像中噪声的敏感性限制了其实际应用的潜力,尤其是在处理边缘模糊和噪声干扰较大的图像时,传统...
recommend-type

人工智能实验K聚类算法实验报告.docx

K-均值算法是K聚类算法的一种实现方式,其基本步骤如下: 1. 初始化:选择K个初始聚类中心,通常可以随机选取数据集中的K个点作为初始中心。 2. 分配阶段:将每个数据点分配到最近的聚类中心所在的类别。 3. 更新...
recommend-type

Termux (Android 5.0+).apk.cab

Termux (Android 5.0+).apk.cab
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"