opencv鱼眼相机标定
时间: 2023-08-15 16:13:15 浏览: 205
鱼眼相机标定是通过对鱼眼镜头进行参数校准,从而纠正图像的畸变。OpenCV提供了一个函数来执行鱼眼相机标定,该函数是`cv2.fisheye.calibrate()`。
首先,你需要准备一组鱼眼相机的标定图像,这些图像包含了不同的场景和角度。然后,你可以使用`cv2.findChessboardCorners()`函数来检测标定图像中的棋盘格角点。
一旦你获得了棋盘格角点的像素坐标,你可以使用`cv2.fisheye.calibrate()`函数来进行鱼眼相机的标定。此函数将返回相机矩阵、畸变系数、旋转矩阵和平移向量等参数。
以下是一个简单的示例代码:
```python
import cv2
import numpy as np
# 准备标定图像和棋盘格参数
images = [...] # 标定图像列表
pattern_size = (9, 6) # 棋盘格内角点数目
# 检测棋盘格角点
obj_points = [] # 3D 空间中的棋盘格角点
img_points = [] # 2D 图像平面上的棋盘格角点
for image in images:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, pattern_size)
if ret:
obj_points.append(np.zeros((pattern_size[0] * pattern_size[1], 3), np.float32))
obj_points[-1][:, :2] = np.mgrid[0:pattern_size[0], 0:pattern_size[1]].T.reshape(-1, 2)
img_points.append(corners)
# 鱼眼相机标定
ret, K, D, rvecs, tvecs = cv2.fisheye.calibrate(obj_points, img_points, gray.shape[::-1], None, None)
# 打印标定结果
print("相机矩阵:\n", K)
print("畸变系数:\n", D)
print("旋转向量:\n", rvecs)
print("平移向量:\n", tvecs)
```
请注意,鱼眼相机标定的准确性取决于标定图像的质量和角点检测的准确性。因此,为了获得更好的标定结果,你可能需要使用更多的标定图像,并确保棋盘格角点在图像中被正确检测到。
阅读全文