维特比译码python代码
时间: 2024-09-05 12:01:35 浏览: 39
基于verilog的维特比译码
5星 · 资源好评率100%
维特比算法(Viterbi Algorithm)是一种动态规划算法,用于寻找最有可能产生观测序列的隐含状态序列,常用于隐藏马尔科夫模型(Hidden Markov Model, HMM)的解码。以下是一个简单的维特比译码算法的Python代码示例:
```python
import numpy as np
def viterbi(obs, states, start_p, trans_p, emit_p):
"""
obs: 观测序列,例如:['红','红','蓝','绿','蓝']
states: 隐状态集合,例如:['晴','阴','雨']
start_p: 初始状态概率分布,例如:{'晴': 0.6, '阴': 0.3, '雨': 0.1}
trans_p: 状态转移概率矩阵,例如:
{
'晴': {'晴': 0.7, '阴': 0.2, '雨': 0.1},
'阴': {'晴': 0.3, '阴': 0.5, '雨': 0.2},
'雨': {'晴': 0.4, '阴': 0.1, '雨': 0.5},
}
emit_p: 发射概率矩阵,例如:
{
'晴': {'红': 0.5, '蓝': 0.4, '绿': 0.1},
'阴': {'红': 0.3, '蓝': 0.4, '绿': 0.3},
'雨': {'红': 0.2, '蓝': 0.3, '绿': 0.5},
}
"""
V = [{}]
path = {}
# 初始化
for y in states:
V[0][y] = start_p[y] * emit_p[y][obs[0]]
path[y] = [y]
# 对于观测序列中的其余观测值
for t in range(1, len(obs)):
V.append({})
newpath = {}
for cur_state in states:
# 计算到达当前状态的最大概率路径及其概率
(prob, state) = max((V[t-1][prev_state] * trans_p[prev_state][cur_state] * emit_p[cur_state][obs[t]], prev_state) for prev_state in states)
V[t][cur_state] = prob
newpath[cur_state] = path[state] + [cur_state]
path = newpath
# 返回最大概率路径
(prob, state) = max((V[len(obs) - 1][y], y) for y in states)
return (prob, path[state])
# 示例数据
states = ('雨', '晴', '阴')
obs = ('蓝', '蓝', '红')
start_p = {'雨': 1/3, '晴': 1/3, '阴': 1/3}
trans_p = {'雨': {'雨': 0.5, '晴': 0.2, '阴': 0.3},
'晴': {'雨': 0.3, '晴': 0.5, '阴': 0.2},
'阴': {'雨': 0.2, '晴': 0.3, '阴': 0.5}}
emit_p = {'雨': {'蓝': 0.5, '红': 0.4, '绿': 0.1},
'晴': {'蓝': 0.4, '红': 0.5, '绿': 0.1},
'阴': {'蓝': 0.3, '红': 0.4, '绿': 0.3}}
prob, path = viterbi(obs, states, start_p, trans_p, emit_p)
print(f"概率: {prob}")
print(f"路径: {path}")
```
该代码使用了隐藏马尔科夫模型的基础元素来实现维特比算法。它首先初始化路径概率和路径记录,然后迭代地计算从每个状态出发到达每个可能的下一个状态的最大概率,并记录下路径。最后,它返回最大概率路径及其概率。
阅读全文