pytorch深度学习实战卷积神经网络
时间: 2023-08-13 22:05:45 浏览: 433
Pytorch之卷积网络
在PyTorch深度学习实战中,可以使用卷积神经网络来进行图像分类任务。在实战中,可以使用经典的卷积神经网络模型,如VGG、ResNet、Inception和DenseNet等。这些模型都是在深度学习的发展过程中出现的经典模型,对深度学习的学术研究和工业生产都起到了巨大的促进作用。初学者可以通过阅读论文和实现代码来全面了解这些模型。例如,可以使用PyTorch中的torchvision.models模块来加载预训练的卷积神经网络模型,如VGG-16、VGG-19和ResNet等\[1\]。其中,VGG-16和VGG-19是由卷积层、池化层和全连接层等不同组合构成的经典卷积神经网络模型\[1\]。而ResNet是一种使用残差单元连接而成的卷积神经网络模型,通过跨层的短接来突出微小的变化,使得网络对误差更加敏感,并解决了网络退化现象,具有良好的学习效果\[2\]\[3\]。因此,在PyTorch深度学习实战中,可以选择合适的卷积神经网络模型来进行图像分类任务。
#### 引用[.reference_title]
- *1* *2* *3* [PyTorch深度学习实战 | 典型卷积神经网络](https://blog.csdn.net/qq_41640218/article/details/129832298)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文