int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);

时间: 2024-03-15 21:39:01 浏览: 23
`int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);` 是一个用于初始化互斥锁的函数。它接受两个参数:`mutex`和`attr`。`mutex`是一个指向互斥锁对象的指针,`attr`是一个指向互斥锁属性对象的指针。 该函数的作用是根据给定的属性初始化互斥锁对象。如果`attr`参数为`NULL`,则使用默认的属性初始化互斥锁。如果初始化成功,函数返回0;如果出错,函数返回一个错误编号。 以下是一个示例代码,演示了如何使用`pthread_mutex_init`函数初始化互斥锁: ```c #include <pthread.h> #include <stdio.h> pthread_mutex_t mutex; int main() { int result = pthread_mutex_init(&mutex, NULL); if (result == 0) { printf("互斥锁初始化成功\n"); } else { printf("互斥锁初始化失败,错误编号:%d\n", result); } return 0; } ```
相关问题

int pthread_mutex_destroy(pthread_mutex_t *mutex);

`int pthread_mutex_destroy(pthread_mutex_t *mutex);`函数用于销毁互斥量。它接受一个指向互斥量的指针作为参数,并将该互斥量销毁。销毁互斥量后,不能再对其进行任何操作。 以下是一个简单的示例演示如何使用`pthread_mutex_destroy`函数: ```c #include <pthread.h> #include <stdio.h> pthread_mutex_t mutex; void* thread_function(void* arg) { pthread_mutex_lock(&mutex); printf("Thread locked the mutex\n"); pthread_mutex_unlock(&mutex); printf("Thread unlocked the mutex\n"); return NULL; } int main() { pthread_mutex_init(&mutex, NULL); pthread_t thread; pthread_create(&thread, NULL, thread_function, NULL); pthread_join(thread, NULL); pthread_mutex_destroy(&mutex); return 0; } ``` 在上面的示例中,我们首先使用`pthread_mutex_init`函数初始化了一个互斥量。然后,我们创建了一个线程,在线程函数中使用`pthread_mutex_lock`函数锁定了互斥量,并在之后使用`pthread_mutex_unlock`函数解锁了互斥量。最后,我们在主线程中使用`pthread_mutex_destroy`函数销毁了互斥量。

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 是一个静态初始化互斥锁的方法。这个方法会将互斥锁的属性设置为默认值,并将互斥锁的状态设置为未锁定状态。这个方法可以用于在程序中定义一个互斥锁变量并初始化它,以便在后续的代码中使用。需要注意的是,这个方法只能用于静态初始化,如果需要在运行时动态初始化互斥锁,需要使用 pthread_mutex_init() 函数。 引用中提到了 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;,这与 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 是等价的,只是变量名不同而已。 引用中介绍了 pthread_mutex_lock()、pthread_mutex_unlock() 和 pthread_mutex_trylock() 这三个函数,它们都是用于操作互斥锁的。pthread_mutex_lock() 用于获取互斥锁,如果互斥锁已经被占用,则会阻塞等待;pthread_mutex_unlock() 用于释放互斥锁;pthread_mutex_trylock() 与 pthread_mutex_lock() 类似,但是如果互斥锁已经被占用,则会立即返回 EBUSY 错误码,而不是阻塞等待。

相关推荐

最新推荐

recommend-type

pthread_cond_wait() 用法深入分析

以下是对pthread_cond_wait的用法进行了详细的分析介绍,需要的朋友可以过来参考下
recommend-type

linux创建线程之pthread_create的具体使用

 int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict_attr,void*(*start_rtn)(void*),void *restrict arg); 返回值  若成功则返回0,否则返回出错编号 参数  第一个参数为指向线程...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信