回溯搜索算法案例matlab
时间: 2023-08-23 15:15:56 浏览: 147
在MATLAB中,回溯搜索算法可以用于解决一些组合优化问题。下面是一个简单的回溯搜索算法案例,用于解决旅行商问题(TSP)。
```matlabfunction tsp_backtracking()
%旅行城市的坐标 cities = [00;13;21;44;32];
% 初始化最佳路径和最短距离 best_path = [];
best_distance = Inf;
% 访问标记数组 visited = zeros(1, size(cities,1));
%从第一个城市开始 current_city =1;
% 开始回溯搜索 backtrack(current_city, visited, [],0);
% 输出结果 disp("最佳路径:" + num2str(best_path));
disp("最短距离:" + num2str(best_distance));
% 回溯搜索函数 function backtrack(city, visited, path, distance)
% 更新路径和距离 path = [path city];
distance = distance + calculate_distance(cities(path(end-1),:), cities(path(end),:));
% 如果所有城市都已访问,则比较距离是否最短 if sum(visited) == length(visited)
if distance + calculate_distance(cities(path(end),:), cities(1,:)) < best_distance best_path = path;
best_distance = distance + calculate_distance(cities(path(end),:), cities(1,:));
end return;
end % 标记当前城市为已访问 visited(city) =1;
% 对于每个未访问的城市,递归调用回溯搜索函数 for i =1:length(visited)
if visited(i) ==0 backtrack(i, visited, path, distance);
end end % 恢复当前城市的未访问状态 visited(city) =0;
end % 计算两个城市之间的距离 function distance = calculate_distance(city1, city2)
distance = norm(city1 - city2);
endend```
这个案例中,我们定义了一个旅行城市的坐标矩阵,然后使用回溯搜索算法来找到旅行商的最优路径和最短距离。通过递归调用回溯搜索函数,我们遍历了所有可能的路径,并记录下最佳路径和最短距离。最后,我们输出了结果。
请注意,这只是一个简单的示例,实际应用中可能需要考虑更复杂的问题和优化策略。
阅读全文
相关推荐















