我现在有个onnx模型,请帮我写一个加载模型,预处理图像归一,后处理iou和nms以及画框后输出某个类别的目标坐标的代码
时间: 2024-11-22 19:34:15 浏览: 11
在Python中,特别是使用PyTorch和OpenCV库,你可以按照以下步骤来实现这个功能:
```python
import torch
from PIL import Image
import cv2
import numpy as np
from torchvision.transforms import ToTensor, Normalize
from detectron2.config import get_cfg
from detectron2.modeling import build_model
from detectron2.engine import DefaultPredictor
from detectron2.structures import Boxes
# 1. 加载ONNX模型
model = torch.jit.load('your_onnx_model.onnx') # 替换为你的模型路径
model.eval() # 设置模型为推理模式
# 2. 预处理图像
def preprocess_image(image_path):
img = Image.open(image_path)
transform = transforms.Compose([ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
img_tensor = transform(img).unsqueeze(0) # 添加维度用于网络输入
return img_tensor
# 3. 计算IoU和NMS
def compute_iou(box1, box2):
# 定义计算IoU的函数,这里是一个简化版示例,实际应用可能需要根据你的需求调整
x_min = max(box1[0], box2[0])
y_min = max(box1[1], box2[1])
x_max = min(box1[2], box2[2])
y_max = min(box1[3], box2[3])
intersection_area = (x_max - x_min) * (y_max - y_min)
union_area = (box1[2] - box1[0]) * (box1[3] - box1[1]) + (box2[2] - box2[0]) * (box2[3] - box2[1]) - intersection_area
iou = intersection_area / union_area
return iou
def nms(boxes, scores, threshold=0.5):
keep = []
while boxes.shape[0]:
max_score_idx = np.argmax(scores)
keep.append(max_score_idx)
if len(keep) == boxes.shape[0]: break
boxes_to_remove = [i for i in range(len(boxes)) if i != max_score_idx and compute_iou(boxes[max_score_idx], boxes[i]) > threshold]
boxes = np.delete(boxes, boxes_to_remove, axis=0)
scores = np.delete(scores, boxes_to_remove)
return keep
# 4. 绘制边框并输出特定类别坐标
def draw_boxes_and_output(image, prediction, category_id):
boxes = prediction["instances"].pred_boxes.tensor
scores = prediction["instances"].scores
class_labels = prediction["instances"].pred_classes.tolist()
indices = [idx for idx, label in enumerate(class_labels) if label == category_id]
filtered_boxes = boxes[indices]
for box in filtered_boxes:
top_left, bottom_right = box.tolist()
cv2.rectangle(image, (top_left[0], top_left[1]), (bottom_right[0], bottom_right[1]), color=(0, 255, 0), thickness=2)
return image, filtered_boxes
# 示例使用Detectron2模型预测
cfg = get_cfg() # 获取默认配置
cfg.MODEL.WEIGHTS = 'detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849600/model_final.pth' # 替换为你需要的预训练权重
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
predictor = DefaultPredictor(cfg)
image_path = 'input_image.jpg' # 输入图像路径
img_preprocessed = preprocess_image(image_path)
outputs = model(img_preprocessed.to(device))
# 预测和后处理
predictions = predictor(outputs)
drawn_image, output_boxes = draw_boxes_and_output(cv2.imread(image_path), predictions, category_id=your_category_id) # 替换为你的类别ID
cv2.imshow("Output", drawn_image)
cv2.waitKey(0)
阅读全文