yolov5的类别损失
时间: 2023-09-02 09:13:44 浏览: 78
YOLOv5网络结构细节图.zip
yolov5的类别损失是通过计算二分类损失来实现的。具体来说,对于每个样本,会有一个包含所有类别的标签,其中正样本的类别标签为1,负样本的类别标签为0。对于正样本的分类损失,会采用二分类损失函数计算,即使用nn.BCEWithLogitsLoss。而对于正负样本的前景背景预测的分类损失,也称为Objectness损失,使用预测框和GT框的IOU作为Objectness的标签,即预测框和GT框重合度越高,当前样本属于前景的可能性就越大。这种方法相较于以往的算法,在处理不同的anchor接近GT框的程度时更加灵活。总结来说,yolov5的类别损失是通过二分类损失函数计算得出的,其中考虑到了目标可能同时属于多个类别的情况。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [yolov5源码解析--损失计算与anchor](https://blog.csdn.net/dou3516/article/details/130358680)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [YOLOv5代码阅读笔记 - 损失函数](https://blog.csdn.net/weixin_51917840/article/details/119322638)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [YOLOV5源码解析-损失解释 compute_loss(), build_targtets()](https://blog.csdn.net/lcb_coconut/article/details/113128526)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文