statsmodels 一元线性回归
时间: 2024-05-08 07:13:12 浏览: 167
一元线性回归
Statsmodels 是 Python 中一个强大的统计分析库,其中包含了许多常用的统计模型和方法。一元线性回归是其中的一种模型。
一元线性回归指的是只有一个自变量(或特征)的线性回归模型。它的数学表达式为 y = β0 + β1x + ε,其中 y 是因变量,x 是自变量,β0 和 β1 是模型的参数,ε 是误差项。
在 statsmodels 中,可以使用 OLS(Ordinary Least Squares,最小二乘法)类来实现一元线性回归。该类可以通过调用 fit() 方法来拟合数据,并返回回归模型的相关参数,例如斜率、截距、残差等。
下面是一元线性回归的代码示例:
```python
import statsmodels.api as sm
import numpy as np
# 生成随机数据
np.random.seed(12345)
x = np.random.randn(100)
y = 2*x + np.random.randn(100)
# 拟合一元线性回归模型
model = sm.OLS(y, sm.add_constant(x))
result = model.fit()
# 输出回归结果
print(result.summary())
```
阅读全文