vgae pytorch实现
时间: 2023-11-13 07:02:45 浏览: 112
好的,我明白了。关于 VAE 的 PyTorch 实现,你可以参考以下步骤:
1. 定义编码器和解码器的网络结构;
2. 定义重参数化函数,用于从编码器的输出中采样隐变量;
3. 定义损失函数,包括重构误差和 KL 散度;
4. 定义优化器,使用反向传播算法更新网络参数;
5. 训练模型,迭代多个 epoch,每个 epoch 都对训练集进行一次完整的遍历。
以下是一个简单的 VAE 实现示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(Encoder, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc21 = nn.Linear(hidden_dim, latent_dim)
self.fc22 = nn.Linear(hidden_dim, latent_dim)
def forward(self, x):
h = F.relu(self.fc1(x))
mu = self.fc21(h)
logvar = self.fc22(h)
return mu, logvar
class Decoder(nn.Module):
def __init__(self, latent_dim, hidden_dim, output_dim):
super(Decoder, self).__init__()
self.fc1 = nn.Linear(latent_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, z):
h = F.relu(self.fc1(z))
x = torch.sigmoid(self.fc2(h))
return x
class VAE(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(VAE, self).__init__()
self.encoder = Encoder(input_dim, hidden_dim, latent_dim)
self.decoder = Decoder(latent_dim, hidden_dim, input_dim)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
return z
def forward(self, x):
mu, logvar = self.encoder(x)
z = self.reparameterize(mu, logvar)
x_recon = self.decoder(z)
return x_recon, mu, logvar
def loss_function(x_recon, x, mu, logvar):
BCE = F.binary_cross_entropy(x_recon, x, reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
input_dim = 784
hidden_dim = 256
latent_dim = 20
lr = 1e-3
batch_size = 128
num_epochs = 10
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('data', train=True, download=True,
transform=torchvision.transforms.ToTensor()),
batch_size=batch_size, shuffle=True)
model = VAE(input_dim, hidden_dim, latent_dim)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
for epoch in range(num_epochs):
for i, (x, _) in enumerate(train_loader):
x = x.view(-1, input_dim)
optimizer.zero_grad()
x_recon, mu, logvar = model(x)
loss = loss_function(x_recon, x, mu, logvar)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print("Epoch[{}/{}], Step [{}/{}], Loss: {:.4f}"
.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
```
阅读全文