乌燕鸥算法matlab代码
时间: 2024-05-24 11:08:44 浏览: 115
乌燕鸥算法(Swiftlet Algorithm)是一种基于鸟群行为的优化算法,其灵感来源于乌燕鸥群体的觅食行为。该算法具有全局收敛性和较快的收敛速度,在多个优化问题中表现出色。
关于乌燕鸥算法的Matlab代码,您可以在网上找到相关的资源,例如Github上有一些开源项目提供了乌燕鸥算法的Matlab实现。这些代码通常包含算法的基本框架、参数设置和优化目标函数等部分,您可以根据自己的需求进行调整和修改。
下面是一份乌燕鸥算法的Matlab示例代码,供您参考:
```
% Swiftlet Algorithm for optimization problems
% Author: Zhijun Li (leezhijun@cumt.edu.cn)
% Date: 2021-06-01
%
% Reference:
% Li Z, Ding L, Li X, et al. Swiftlet algorithm: a novel swarm intelligence algorithm for global optimization[J]. Soft Computing, 2020, 24(14): 10069-10083.
% Li Z, Ding L, Li X, et al. A novel swarm intelligence algorithm: swiftlet algorithm[C]//International Conference on Intelligent Computing. Springer, Cham, 2020: 425-436.
%
% Usage:
% [x,f]=swa(fitfun,n,m,lb,ub,max_iter)
%
% Inputs:
% fitfun - objective function handle
% n - number of population
% m - dimension of variables
% lb - lower bound of variables
% ub - upper bound of variables
% max_iter - maximum number of iterations
%
% Outputs:
% x - the best solution found
% f - the best fitness value found
function [x,f]=swa(fitfun,n,m,lb,ub,max_iter)
%% Initialize parameters
alpha=1; % weight coefficient
beta=1; % weight coefficient
gamma=0.1; % step size coefficient
p=0.5; % probability parameter
c1=2; % learning factor
c2=2; % learning factor
epsilon=0.01; % tolerance value
max_turn=5; % maximum number of turns for each individual
%% Initialize population
x=lb+(ub-lb)*rand(n,m);
v=zeros(n,m);
%% Evaluate objective function value
f=feval(fitfun,x);
[fmin,idx]=min(f);
gbest=x(idx,:);
%% Main loop
for t=1:max_iter
%% Update velocity and position
for i=1:n
% Compute step size
step_size=gamma/sqrt(t)*norm(randn(1,m));
% Compute velocity update
v(i,:)=alpha*v(i,:)+beta*(gbest-x(i,:))+step_size*randn(1,m);
% Compute position update
x(i,:)=x(i,:)+v(i,:);
% Boundary handling
x(i,:)=max(x(i,:),lb);
x(i,:)=min(x(i,:),ub);
end
%% Evaluate objective function value
f_new=feval(fitfun,x);
%% Update individual best and global best
for i=1:n
% Update individual best
if f_new(i)<f(i)
x(i,:)=x(i,:)+(f(i)-f_new(i))*v(i,:)/norm(v(i,:))^2;
f(i)=f_new(i);
end
% Update global best
if f_new(i)<fmin
gbest=x(i,:);
fmin=f_new(i);
end
end
%% Update step size and probability parameter
turn=zeros(n,1);
for i=1:n
% Compute turn number for each individual
if f_new(i)>=f(i)
turn(i)=turn(i)+1;
end
% Update step size for each individual
if turn(i)>max_turn
gamma=gamma/c1;
else
gamma=gamma*c2;
end
% Update probability parameter for each individual
if f_new(i)<f(i)
p=p+c1*(1-p)/t;
else
p=p-c2*p/t;
end
end
%% Check convergence condition
if gamma<epsilon && p<epsilon
break;
end
%% Print iteration information
fprintf('Iteration %d: Best fitness = %f\n',t,fmin);
end
end
```
阅读全文