auto lastN(SizeType size)-> decltype(seqN(Eigen::last+fix<1>()-size, size)) { return seqN(Eigen::last+fix<1>()-size, size); }

时间: 2024-04-14 16:30:41 浏览: 18
这段代码是C++中的函数定义,函数名为`lastN`,接受一个参数`size`,返回类型使用`decltype`进行推导。函数体内部调用了`seqN`函数,并传入了两个参数,第一个参数是`Eigen::last+fix<1>()-size`,第二个参数是`size`。 根据代码的语义来看,这段代码的功能可能是返回一个长度为`size`的序列,该序列的起始位置为`Eigen::last+fix<1>()-size`。 需要注意的是,这段代码中使用了一些自定义的函数和类型,如`seqN`和`Eigen::last+fix<1>()`,这些函数和类型的具体实现不在代码中给出,可能需要在其他地方进行定义或者引用。
相关问题

namespace detail { template <typename F, typename Tuple, std::size_t... I> constexpr decltype(auto) apply_impl(F&& f, Tuple&& t, std::index_sequence<I...>) { return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); } } template <typename F, typename Tuple> constexpr decltype(auto) apply(F&& f, Tuple&& t) { return detail::apply_impl( std::forward<F>(f), std::forward<Tuple>(t), std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>{}); } 解释下这段代码

这段代码是一个实现了函数对象的调用的辅助函数模板 `apply`。它使用了 C++17 中引入的 `std::index_sequence` 和 `std::make_index_sequence` 来生成一个序列,用于展开函数参数包。 首先,`apply` 函数接受两个参数:一个函数对象 `f` 和一个参数包 `t`。然后,它调用了 `detail::apply_impl` 函数,将函数对象、参数包和生成的序列作为参数传递给它。 `apply_impl` 函数是一个私有的辅助函数模板,它接受三个参数:一个函数对象 `f`、一个参数包 `t` 和一个序列 `std::index_sequence<I...>`。在函数体内部,通过调用 `std::get<I>(std::forward<Tuple>(t))...` 来展开参数包中的参数。然后,使用 `std::forward<F>(f)` 来调用函数对象,并将展开后的参数传递给它。 最后,`apply_impl` 函数返回调用结果。 总而言之,这段代码实现了一个 `apply` 函数,可以将一个函数对象和一个参数包传递进去,并调用该函数对象,将参数包中的参数作为函数调用的实参。这样做可以方便地对函数对象进行调用,并且不需要手动展开参数包。

boost::optional<std::result_of_t<decltype(&T::get_data)(T)>>

`boost::optional<std::result_of_t<decltype(&T::get_data)(T)>>` 是一个 C++ 模板类型,它表示一个可选的(可能存在或不存在)类型,其值类型是通过调用类型为 `T` 的对象的成员函数 `get_data` 的返回类型来确定的。 具体来说,`decltype(&T::get_data)` 表示成员函数 `get_data` 的类型(指针类型),`decltype(&T::get_data)(T)` 表示接受类型为 `T` 的对象作为参数的成员函数 `get_data` 的类型(函数类型)。`std::result_of_t<decltype(&T::get_data)(T)>` 表示调用类型为 `T` 的对象的成员函数 `get_data` 后的返回类型。 最终,`boost::optional<std::result_of_t<decltype(&T::get_data)(T)>>` 表示一个可选的类型,它的值类型是通过调用类型为 `T` 的对象的成员函数 `get_data` 的返回类型来确定的。这个类型可以表示一个值可能存在,也可能不存在的情况。

相关推荐

In file included from /home/yhdr/2-test-2023-06_v3/sent.h:24:0, from /home/yhdr/2-test-2023-06_v3/sent.cpp:1: /usr/include/c++/7/thread: In instantiation of ‘struct std::thread::_Invoker<std::tuple<void (*)(double*, double&, double&, double&, double&, double&), double**, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double> > >’: /usr/include/c++/7/thread:127:22: required from ‘std::thread::thread(_Callable&&, _Args&& ...) [with _Callable = void (&)(double*, double&, double&, double&, double&, double&); _Args = {double**, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>}]’ /home/yhdr/2-test-2023-06_v3/sent.cpp:18:153: required from here /usr/include/c++/7/thread:240:2: error: no matching function for call to ‘std::thread::_Invoker<std::tuple<void (*)(double*, double&, double&, double&, double&, double&), double**, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double> > >::_M_invoke(std::thread::_Invoker<std::tuple<void (*)(double*, double&, double&, double&, double&, double&), double**, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double> > >::_Indices)’ operator()() ^~~~~~~~ /usr/include/c++/7/thread:231:4: note: candidate: template<long unsigned int ..._Ind> decltype (std::__invoke((_S_declval<_Ind>)()...)) std::thread::_Invoker<_Tuple>::_M_invoke(std::_Index_tuple<_Ind ...>) [with long unsigned int ..._Ind = {_Ind ...}; _Tuple = std::tuple<void (*)(double*, double&, double&, double&, double&, double&), double**, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double>, std::reference_wrapper<double> >] _M_invoke(_Index_tuple<_Ind...>)

最新推荐

recommend-type

C++11新特性中auto 和 decltype 区别和联系

auto f() -&gt; decltype(x * 2) { return x * 2; } // 函数返回类型是int ``` 三、`decltype`与`auto`的区别 1. `auto`总是根据初始值推断类型,而`decltype`则是根据表达式本身来推断类型。 2. 对于引用,`auto`...
recommend-type

基于springboot+vue开发社区医疗服务系统--附毕业论文+源代码+sql(毕业设计).rar

本项目是一个基于Spring Boot和Vue开发的社区医疗服务系统,旨在为计算机相关专业的学生提供毕业设计或课程设计的实践机会,同时也适合Java学习者进行项目实战练习。项目资源包括完整的源代码、数据库脚本以及详细的开发说明,并附有参考论文,可直接用于毕业设计。 系统采用Spring Boot框架搭建后台,利用MySQL数据库存储数据,通过JDK、IntelliJ IDEA和Tomcat构建开发环境。经过严格的调试,项目已确保稳定运行,为学习者提供了一个可靠的开发平台。 在功能方面,该系统不仅实现了用户注册与登录、医疗服务预约、健康档案管理、在线咨询等基本功能,还提供了数据统计与分析等高级功能,以满足社区医疗服务的实际需求。学习者可以在现有代码基础上进行修改和扩展,实现更多个性化功能,从而提升自己的编程能力和项目实战经验。
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型