lightgbm回归模型
时间: 2023-10-13 09:05:57 浏览: 215
回归模型
lightGBM回归模型是一种机器学习模型,用于解决回归问题。它是基于梯度提升决策树的框架,并且具有高效性和准确性的特点。该模型适用于处理大规模数据集,可以快速训练和预测。
在lightGBM回归模型中,特征数被设置为5个,并使用均方误差(MSE)作为评价指标来衡量模型的准确性。数据集被划分为训练集和测试集,通过训练集来训练模型,然后使用测试集来验证模型的预测效果。
在模型验证过程中,可以添加代码print(RSM)来观察损失的变化。模型验证的结果可以通过画图展示,在图中可以看到预测结果与实际结果的差异情况。
此外,还可以进行特征重要性分析,通过绘制特征重要性图表来了解各个特征对模型预测的贡献程度。
阅读全文