Wasserstein和KL、JS散度区别

时间: 2024-06-12 13:09:30 浏览: 195
Wasserstein距离与KL散度和JS散度在衡量两个概率分布相似性方面有一些区别。KL散度和JS散度是基于概率论的度量方法,用于比较两个概率分布之间的差异。KL散度是非对称的,它衡量了一个分布相对于另一个分布的信息差异。而JS散度是KL散度的一种变体,它解决了KL散度非对称的问题,并且是对称的。KL散度和JS散度都是突变的,要么最大要么最小,且在高维空间中无法提供有意义的梯度信息。 而Wasserstein距离是一种平滑的度量方法,它衡量了通过最小成本将一个分布转化为另一个分布的方法。Wasserstein距离可以提供有意义的梯度,因此在一些优化算法中被广泛应用。与KL散度和JS散度不同,Wasserstein距离在高维空间中仍然能提供有意义的梯度信息。
相关问题

Wasserstein距离

### 回答1: Wasserstein距离(Wasserstein distance),也称为Earth Mover's Distance(EMD),是一种用于衡量两个概率分布之间差异的指标。它是用来描述平面上两个分布之间的最小运输成本,其中运输成本被定义为将一个分布中的质量从一个位置(即坐标)移到另一个分布中对应的位置所需的代价,代价可以是任何可测量的数量,如欧几里得距离或曼哈顿距离等。Wasserstein距离是一种更加稳健和可靠的距离度量方法,尤其适用于高维空间和非凸形状的分布。 ### 回答2: Wasserstein距离,又称为地面距离(Earth Mover's Distance,EMD),是一种用于度量两个概率分布之间的差异的指标。这个距离度量方法源自运输问题的数学描述。 假设我们有两个概率分布P和Q,它们分别表示两个不同的集合上的概率密度函数。Wasserstein距离用于度量将一个分布变成另一个分布所需的最小平均“移动距离”。 具体来说,Wasserstein距离将两个分布之间的差异看作是将一个分布中的质量从一个点转移到另一个点所需的最小工作量。每个点的质量可以通过其对应的概率密度函数值来表示。从一个点到另一个点的移动距离可以通过两个点之间的距离来衡量。 因此,Wasserstein距离计算的是使得从一个分布P到另一个分布Q的平均移动距离最小化的最优运输方案。这个距离的计算方法考虑了两个分布的整体形状和分布的差异,并且不受单个峰值点的影响。 Wasserstein距离在计算机视觉、图像处理、机器学习等领域中得到广泛应用。它可以用于图像生成模型的评估、图像检索、风格迁移等任务。与传统的KL散度或JS散度相比,Wasserstein距离能够更好地保留分布之间的几何性质,具有更好的稳定性和鲁棒性。 总之,Wasserstein距离是一种度量两个概率分布之间差异的有效方法,它通过考虑运输问题的最优解来度量分布之间的差异。 ### 回答3: Wasserstein距离(Wasserstein distance),也称作Earth Mover’s Distance(EMD),是一种用于度量两个概率分布之间的差异的指标。它是由德国数学家瓦瑟斯坦(Wasserstein)在20世纪60年代提出的。Wasserstein距离考虑了从一个分布变成另一个分布的最小运输成本。 Wasserstein距离的计算方法比较复杂,需要利用线性规划方法来解决,但其思想基本上是在计算从一个分布将质量从一个点转移到另一个点的成本。它可以解释为“将一个分布中的一堆土堆移到另一个分布中所需要的最小工作量”。 Wasserstein距离与其他距离度量方法相比具有一定的优势。首先,它可以应用于高维空间以及概率分布的无穷维空间。其次,Wasserstein距离在处理两个分布具有重叠部分时仍然能够提供有意义的比较结果。而且,Wasserstein距离还具有较好的数学性质,它能够形成一个度量空间,满足距离度量的基本特性,例如非负性、对称性和三角不等式。 Wasserstein距离在很多领域都有广泛的应用,例如图像处理、机器学习、计算机视觉等。在图像处理中,通过计算两个图像的Wasserstein距离,可以用于图像匹配、图像生成等任务。在机器学习领域,Wasserstein距离可以用来度量两个概率分布的相似性,进而用于分类、聚类等问题。 总之,Wasserstein距离是一种有力的概率分布之间距离度量的方法,它通过计算从一个分布变成另一个分布的最小运输成本,能够更好地揭示两个分布之间的差异和相似性,具有广泛的应用价值。

wasserstein distance loss

华瑟斯坦距离损失(Wasserstein Distance Loss)是一种用于度量两个概率分布之间差异的度量方式。其本质是基于最优运输(Optimal Transport)理论的,即何种方法可以从一个分布将所有的概率质量转移到另一个分布,使得转移的总成本最小。尤其对于像生成对抗网络(GAN)这样需要优化两个分布之间的距离的任务中,相比于传统的KL散度或JS散度等度量方式,Wasserstein距离可以提供更加准确、鲁棒和平滑的优化目标。 Wasserstein距离损失的定义是:对于分别服从$p(x)$和$q(x)$两个分布的输入样本$x$和$x'$,将其所处的空间的任意成对距离定义为$c(x, x')$,而其中的成本则为$d = \min\limits_{\gamma \sim \Pi(p, q)} \mathbb{E}_{(x,x') \sim \gamma}[c(x,x')]$,其中的$\Pi(p,q)$表示$p$和$q$的所有联合分布的集合。因此,Wasserstein距离可以表示为: $W(p,q) = \min\limits_{\gamma \sim \Pi(p, q)} \mathbb{E}_{(x,x') \sim \gamma}[c(x,x')]$ 而Wasserstein距离损失则是在GAN的训练过程中,将生成器(G)生成的样本和真实样本(从真实分布中采样)之间的Wasserstein距离作为损失函数来优化。具体地,对于任意一个判别器(D),我们可以定义其输出为$d(x)$,表示$x$被判别为真实样本的概率(即输出越大则越接近真实样本)。因此,我们可以将D的输出作为相应成对距离的负值,即$c(x,x')=-D(x)+D(x')$,从而得到Wasserstein距离损失: $L_{W}(G,D)=\mathbb{E}_{x\sim p(u)}[-D(x)]+\mathbb{E}_{x'\sim p_g(u)}[D(x')]$ 其中$p(u)$和$p_g(u)$分别表示真实分布和生成分布,在训练中我们在两者中的样本中反复进行训练迭代。通过最小化这个损失函数,生成器逐渐学习到更好的生成分布,从而使得两个分布之间的Wasserstein距离不断减小,最终实现GAN的有效训练。
阅读全文

相关推荐

最新推荐

recommend-type

基于Wasserstein距离和_省略_类的风电_光伏经典场景集生成算法_王群.pdf

为了解决这一问题,"基于Wasserstein距离和改进K-medoids聚类的风电/光伏经典场景集生成算法"提出了一种创新的解决方案。 该研究首先引入了Wasserstein距离这一概念,这是一种衡量概率分布之间差异的度量方式。在...
recommend-type

W距离和WGAN.doc

f-divergence 是衡量两个分布之间的差异程度的数学概念,KL 散度是 f-divergence 的一个特例,用于衡量分布之间的差异程度,又称为相对熵、信息增益。 3. W 距离的定义 W 距离是 Optimal Transport 理论中的核心...
recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依