zsg-dea模型代码
时间: 2023-12-28 11:05:25 浏览: 303
```python
# 导入相关库
import numpy as np
from scipy.optimize import minimize
# 定义ZSG-DEA模型
def ZSG_DEA(x, *args):
# 输入变量
inputs = args[0]
# 输出变量
outputs = args[1]
# 权重
weights = args[2]
# 约束条件
constraints = args[3]
# 计算效率值
efficiency = np.zeros((inputs.shape[0],))
for i in range(inputs.shape[0]):
# 构建约束条件
cons = []
for j in range(constraints.shape[0]):
cons.append({'type': 'ineq', 'fun': lambda x, a=inputs[i], b=outputs[i], w=weights, c=constraints[j]: np.dot(w, (b / a - c) * x) - 1})
# 求解线性规划问题
res = minimize(lambda x: -np.dot(weights, outputs[i] * x), x0=np.ones((inputs.shape[1],)), method='SLSQP', constraints=cons)
efficiency[i] = 1 / res.fun
# 返回效率值
return efficiency
# 测试ZSG-DEA模型
if __name__ == '__main__':
# 输入变量
inputs = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# 输出变量
outputs = np.array([[10, 20], [30, 40], [50, 60]])
# 权重
weights = np.array([0.5, 0.5])
# 约束条件
constraints = np.array([[0.2, 0.3, 0.4], [0.1, 0.2, 0.3]])
# 求解ZSG-DEA模型
efficiency = ZSG_DEA(np.ones((inputs.shape[1],)), inputs, outputs, weights, constraints)
print(efficiency)
```
阅读全文