python代码平行平面腔衍射场自洽积分方程的迭代法求解
时间: 2024-11-06 12:03:34 浏览: 88
在Python中,平行平面腔衍射场的自洽积分方程通常用于解决光学物理中的二维光强分布问题,如菲涅尔区域内的模式分析。这些方程经常出现在波动光学的模拟中,尤其是当涉及到微带电路、光栅等结构时。
迭代法是一种常用的数值求解技术,特别适用于这类非线性偏微分方程,因为它们往往很难通过解析解得到。常见的迭代算法有傅立叶变换迭代法(FFT)、格林函数方法或者直接迭代法,如Jacobi、Gauss-Seidel或SOR(Successive Over Relaxation)。
在Python中,你可以使用NumPy库来进行矩阵运算,SciPy库提供了一些优化的线性代数功能,而Matplotlib则可以用来可视化结果。下面是一个简化版的伪代码示例:
```python
import numpy as np
from scipy.sparse.linalg import spsolve
from matplotlib.pyplot import imshow
# 初始化矩阵和右向量
def create_matrix(K, J):
# 创建K矩阵和J源项
...
def iterate(I_old, K, J, tolerance):
I_new = I_old + spsolve(K, J - K @ I_old) # 使用迭代公式更新I
error = np.linalg.norm(I_new - I_old)
while error > tolerance:
I_old = I_new
I_new = ... # 重复迭代过程
error = ...
# 初始化条件并开始迭代
I = np.zeros([...])
K, J = create_matrix(...)
tolerance = 1e-6
I = iterate(I, K, J, tolerance)
# 可视化结果
imshow(I, cmap='gray')
show()
阅读全文
相关推荐


















