python一个数据表均标准化
时间: 2024-09-17 14:08:20 浏览: 74
在Python中,数据标准化(也称归一化)是一种常见的预处理步骤,用于将数值特征缩放到特定的范围内,比如0到1之间,以便于后续的机器学习模型训练。最常用的标准化方法有两种:z-score标准化(标准分数标准化)和最小-最大规范化(Min-Max Scaling)。
1. **Z-Score标准化** (StandardScaler in sklearn):
这种方法将每个特征转换成标准正态分布,即均值为0,方差为1。计算公式为:
\[ X_{normalized} = \frac{X_i - \mu}{\sigma}\]
其中 \( X_i \) 是原始数据,\( \mu \) 是该特征的均值,\( \sigma \) 是标准差。
```python
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
standardized_data = scaler.fit_transform(data)
```
2. **最小-最大规范化** (MinMaxScaler in sklearn):
将数据缩放至给定范围(通常为0到1)。计算公式为:
\[ X_{normalized} = \frac{(X_i - X_{min})}{(X_{max} - X_{min})}\]
```python
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
normalized_data = scaler.fit_transform(data)
```
使用之前记得先确认你的数据适合哪种标准化方法,因为它们会改变数据的尺度和偏移。
阅读全文
相关推荐















