分支限定法tsp时间复杂度

时间: 2024-01-02 21:22:12 浏览: 521
分支限界法(Branch and Bound)是一种求解优化问题的方法,其中TSP问题是其中的一个应用。TSP问题是指旅行商问题,即在给定的一组城市中,找到一条最短路径,使得旅行商可以从一个城市出发,经过每个城市恰好一次,最后回到出发城市。 分支限界法在求解TSP问题时,通过不断地分割问题空间,将问题转化为一系列子问题,并使用限界函数来评估每个子问题的最优解的可能性。具体来说,分支限界法通过构建搜索树,在搜索过程中保存根节点到每个节点的路径,并在求得最优解时,从叶子节点不断回溯到根节点,以确定最优解中的各个分量。 关于分支限界法求解TSP问题的时间复杂度,它取决于问题的规模和限界函数的计算复杂度。在最坏情况下,TSP问题的时间复杂度是指数级的,即O(2^n),其中n是城市的数量。这是因为TSP问题是一个NP-hard问题,没有多项式时间复杂度的解法。 然而,分支限界法可以通过一些优化策略来减少搜索空间,从而提高求解效率。例如,可以使用剪枝技术来减少不必要的搜索,或者使用启发式函数来指导搜索方向。这些优化策略可以在一定程度上降低时间复杂度。 总结起来,分支限界法求解TSP问题的时间复杂度是指数级的,但可以通过优化策略来提高求解效率。
相关问题

旅行售货员问题分支限定法c语言

旅行售货员问题,又称旅行推销员问题(Traveling Salesman Problem, TSP),是指一个售货员要去若干个城市推销商品,他必须从一个城市出发,经过所有城市后再回到出发城市,而且每个城市只能去一次,且最终完成任务的总距离要最短。 旅行售货员问题是一个经典的组合优化问题,它的解空间非常庞大,因此解决方法多样,其中一种常用的方法是分支限定法。 分支限定法是一种穷举法,通过不断分割问题的解空间,排除不可能的解,最终得到问题的最优解。在旅行售货员问题中,分支限定法的思路如下: 1. 首先,根据问题的情况确定问题规模,并初始化某些变量,如最短路径长度、当前路径长度等。 2. 然后,选择一个起始城市,并将其标记为已访问。 3. 对于每个未访问的城市,按照某种规则(如距离最近)选择一个城市,并将其标记为已访问。 4. 计算当前路径长度,如果当前路径长度已经大于已知的最短路径长度,则剪枝,回溯到上一步。 5. 如果所有城市都已经访问完毕,并且当前路径长度小于最短路径长度,则更新最短路径长度,保存当前路径。 6. 回溯到上一步,并继续选择下一个未访问的城市。 7. 重复步骤3-6,直到找到所有可能的路径。 8. 最后,从保存的路径中选出最短路径,即为问题的最优解。 分支限定法的时间复杂度为O(n!),其中n为城市的数量。由于旅行售货员问题是一个NP困难问题,没有多项式时间的解决方法。因此,在实际应用中,往往需要使用一些启发式算法或近似算法来求解。

c++利用分支界限法实现旅行商问题

旅行商问题(TSP)是一个经典的组合优化问题,它要求一个旅行商从起点出发,经过所有城市恰好一次,最终回到起点,使得走过的总路程最短。 分支界限法是一种解决TSP问题的有效算法。它的基本思路是将TSP问题转化为一个树形结构,每个节点表示旅行商在当前已经走过的路径上的位置。通过对当前节点的限定条件进行分支,生成子节点,将问题规模不断缩小,直到找到一个可行解或者证明无解。 以下是一份c++代码,实现了TSP问题的分支界限法求解: ```c++ #include<iostream> using namespace std; const int MAXN = 20; // 最大城市数 const int INF = 0x3f3f3f3f; // 无穷大 int n; // 城市数 int a[MAXN][MAXN]; // 距离矩阵 bool vis[MAXN]; // 标记城市是否已经被访问 int ans = INF; // 当前最优解 int path[MAXN]; // 当前路径 int cur_dis = 0; // 当前路径长度 void dfs(int cur) { if(cur_dis >= ans) return; // 前面已经搜索到更优解,剪枝 if(cur == n) { ans = cur_dis + a[path[n-1]][path[0]]; // 更新最优解 return; } for(int i=0;i<n;i++) { if(!vis[i]) { vis[i] = true; path[cur] = i; cur_dis += a[path[cur-1]][i]; dfs(cur+1); cur_dis -= a[path[cur-1]][i]; vis[i] = false; } } } int main() { cin>>n; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { cin>>a[i][j]; } } vis[0] = true; path[0] = 0; dfs(1); cout<<ans<<endl; return 0; } ``` 这份代码中,我们通过dfs函数实现了TSP问题的分支界限法求解。在dfs函数中,我们先对当前节点的限定条件进行判断,如果当前路径已经比之前搜索到的最优解长,则直接返回。如果当前节点是最后一个节点,则更新最优解。否则,我们枚举所有未被访问的城市,生成子节点,并继续进行搜索。在搜索的过程中,我们用vis数组记录哪些城市已经被访问,path数组记录当前路径,cur_dis记录当前路径长度。 代码中的时间复杂度为O(n!),空间复杂度为O(n),当n较小时可以得到较好的结果,但是当n较大时会出现时间复杂度过高的问题,需要进一步优化算法。
阅读全文

相关推荐

application/x-rar
支限界法类又称为剪枝限界法或分支定界法,它类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。它与回溯法有两点不同:①回溯法只通过约束条件剪去非可行解,而分支限界法不仅通过约束条件,而且通过目标函数的限界来减少无效搜索,也就是剪掉了某些不包含最优解的可行解。②在解空间树上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展结点。为了有效地选择下一扩展结点,以加速搜索的进程, 在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。 从活结点表中选择下一扩展结点的不同方式导致不同的分支限界法。最常见的有以下两种方式: ①队列式(FIFO)分支限界法:队列式分支限界法将活结点表组织成一个队列,并按队列的先进先出原则选取下一个结点为当前扩展结点。 ②优先队列式分支限界法:优先队列式分支限界法将活结点表按照某个估值函数C(x)的值组织成一个优先队列,并按优先队列中规定的结点优先级选取优先级最高的下一个结点成为当前扩展结点。 影响分支限界法搜索效率的有两个主要因素:一是优先队列Q的优先级由C(x)确定,它能否保证在尽可能早的情况下找到最优解,如果一开始找到的就是最优解,那么搜索的空间就能降低到最小。二是限界函数u(x),它越严格就越可能多地剪去分支,从而减少搜索空间。 在用分支限界法解决TSP问题时,有不少很好的限界函数和估值函数已经构造出来出了(限于篇幅,这里不做详细介绍), 使得分支限界法在大多数情况下的搜索效率大大高于回溯法。但是,在最坏情况下,该算法的时间复杂度仍然是O(n!),而且有可能所有的(n-1)!个结点都要存储在队列中。 近似算法是指不能肯定找到最优解的算法,但通常找到的也是比较好的解,或称近似最优解。[20]一般而言,近似算法的时间复杂度较低,通常都是多项式时间内的。由于近似算法的时间效率高,所以在实际应用中,主要是使用近似算法,这一类算法也一直是研究的主要对象。传统的近似算法以采用贪心策略和局部搜索为主,而几十年来,随着以遗传算法为代表的新型启发式搜索算法的逐步完善,在解决TSP问题上获得了巨大的成功。遗传算法、模拟退火算法、蚁群算法等已经成为公认的好算法。在本节中,将介绍传统的近似算法。

大家在看

recommend-type

TPS54160实现24V转正负15V双输出电源AD设计全方案

TPS54160实现24V转正负15V双输出电源AD设计硬件原理PCB+封装库。全套资料使用Altium dsigner 16.1设计,可以给一些需要正负15V电源供电的运放使用。
recommend-type

Windows6.1--KB2533623-x64.zip

Windows6.1--KB2533623-x64.zip
recommend-type

创建的吉他弦有限元模型-advanced+probability+theory(荆炳义+高等概率论)

图 13.16 单元拷贝对话 框 5.在对话框中的 Total number of copies-including original (拷贝总数)文本框中输入 30, 在 Node number increment (节点编号增量)文本框中输入 1。ANSYS 程序将会在编号相邻的 节点之间依次创建 30 个单元(包括原来创建的一个)。 6.单击 按钮对设置进行确认,关闭对话框。图形窗口中将会显示出完整的由 30 个单元组成的弦,如图 13.17 所示。 图 13.17 创建的吉他弦有限元模型 7.单击 ANSYS Toolbar (工具条)上的 按钮,保存数据库文件。 Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.
recommend-type

算法交易模型控制滑点的原理-ws2811规格书 pdf

第八章 算法交易模型控制滑点 8.1 了解滑点的产生 在讲解这类算法交易模型编写前,我们需要先来了解一下滑点是如何产生的。在交易的过程 中,会有行情急速拉升或者回落的时候,如果模型在这种极速行情中委托可能需要不断的撤单追 价,就会导致滑点增大。除了这种行情外,震荡行情也是产生滑点的原因之一,因为在震荡行情 中会出现信号忽闪的现象,这样滑点就在无形中增加了。 那么滑点会产生影响呢?它可能会导致一个本可以盈利的模型转盈为亏。所以我们要控制滑 点。 8.2 算法交易模型控制滑点的原理 通常我们从两个方面来控制算法交易模型的滑点,一是控制下单过程,二是对下单后没有成 交的委托做适当的节约成本的处理。 1、控制下单时间: 比如我们如果担心在震荡行情中信号容易出现消失,那么就可以控制信号出现后 N秒,待其 稳定了,再发出委托。 2. 控制下单的过程: 比如我们可以控制读取交易合约的盘口价格和委托量来判断现在委托是否有成交的可能,如 果我们自己的委托量大,还可以做分批下单处理。 3、控制未成交委托: 比如同样是追价,我们可以利用算法交易模型结合当前的盘口价格进行追价,而不是每一只
recommend-type

Matlab seawater工具包

Matlab seawater工具包

最新推荐

recommend-type

动态规划法,回溯法,分支限界法求解TSP旅行商问题

以下是关于动态规划法、回溯法和分支限界法在TSP问题上的应用。 动态规划法 动态规划法是一种常用的优化方法,通过将问题分解成小问题,解决小问题,然后合并结果来获得最优解。在TSP问题中,动态规划法可以用来...
recommend-type

基于Springboot的健身房管理系统(有报告)。Javaee项目,springboot项目。

重点:所有项目均附赠详尽的SQL文件,这一细节的处理,让我们的项目相比其他博主的作品,严谨性提升了不止一个量级!更重要的是,所有项目源码均经过我亲自的严格测试与验证,确保能够无障碍地正常运行。 1.项目适用场景:本项目特别适用于计算机领域的毕业设计课题、课程作业等场合。对于计算机科学与技术等相关专业的学生而言,这些项目无疑是一个绝佳的选择,既能满足学术要求,又能锻炼实际操作能力。 2.超值福利:所有定价为9.9元的项目,均包含完整的SQL文件。如需远程部署可随时联系我,我将竭诚为您提供满意的服务。在此,也想对一直以来支持我的朋友们表示由衷的感谢,你们的支持是我不断前行的动力! 3.求关注:如果觉得我的项目对你有帮助,请别忘了点个关注哦!你的支持对我意义重大,也是我持续分享优质资源的动力源泉。再次感谢大家的支持与厚爱! 4.资源详情:https://blog.csdn.net/2301_78888169/article/details/144477587 更多关于项目的详细信息与精彩内容,请访问我的CSDN博客!
recommend-type

jQuery bootstrap-select 插件实现可搜索多选下拉列表

Bootstrap-select是一个基于Bootstrap框架的jQuery插件,它允许开发者在网页中快速实现一个具有搜索功能的可搜索多选下拉列表。这个插件通常用于提升用户界面中的选择组件体验,使用户能够高效地从一个较大的数据集中筛选出所需的内容。 ### 关键知识点 1. **Bootstrap框架**: Bootstrap-select作为Bootstrap的一个扩展插件,首先需要了解Bootstrap框架的相关知识。Bootstrap是一个流行的前端框架,用于开发响应式和移动优先的项目。它包含了很多预先设计好的组件,比如按钮、表单、导航等,以及一些响应式布局工具。开发者使用Bootstrap可以快速搭建一致的用户界面,并确保在不同设备上的兼容性和一致性。 2. **jQuery技术**: Bootstrap-select插件是基于jQuery库实现的。jQuery是一个快速、小巧、功能丰富的JavaScript库,它简化了HTML文档遍历、事件处理、动画和Ajax交互等操作。在使用bootstrap-select之前,需要确保页面已经加载了jQuery库。 3. **多选下拉列表**: 传统的HTML下拉列表(<select>标签)通常只支持单选。而bootstrap-select扩展了这一功能,允许用户在下拉列表中选择多个选项。这对于需要从一个较长列表中选择多个项目的场景特别有用。 4. **搜索功能**: 插件中的另一个重要特性是搜索功能。用户可以通过输入文本实时搜索列表项,这样就不需要滚动庞大的列表来查找特定的选项。这大大提高了用户在处理大量数据时的效率和体验。 5. **响应式设计**: bootstrap-select插件提供了一个响应式的界面。这意味着它在不同大小的屏幕上都能提供良好的用户体验,不论是大屏幕桌面显示器,还是移动设备。 6. **自定义和扩展**: 插件提供了一定程度的自定义选项,开发者可以根据自己的需求对下拉列表的样式和行为进行调整,比如改变菜单项的外观、添加新的事件监听器等。 ### 具体实现步骤 1. **引入必要的文件**: 在页面中引入Bootstrap的CSS文件,jQuery库,以及bootstrap-select插件的CSS和JS文件。这是使用该插件的基础。 2. **HTML结构**: 准备标准的HTML <select> 标签,并给予其需要的类名以便bootstrap-select能识别并增强它。对于多选功能,需要在<select>标签中添加`multiple`属性。 3. **初始化插件**: 在文档加载完毕后,使用jQuery初始化bootstrap-select。这通常涉及到调用一个特定的jQuery函数,如`$(‘select’).selectpicker();`。 4. **自定义与配置**: 如果需要,可以通过配置对象来设置插件的选项。例如,可以设置搜索输入框的提示文字,或是关闭/打开某些特定的插件功能。 5. **测试与调试**: 在开发过程中,需要在不同的设备和浏览器上测试插件的表现,确保它按照预期工作。这包括测试多选功能、搜索功能以及响应式布局的表现。 ### 使用场景 bootstrap-select插件适合于多种情况,尤其是以下场景: - 当需要在一个下拉列表中选择多个选项时,例如在设置选项、选择日期范围、分配标签等场景中。 - 当列表项非常多,用户需要快速找到特定项时,搜索功能可以显著提高效率。 - 当网站需要支持多种屏幕尺寸和设备,需要一个统一的响应式UI组件时。 ### 注意事项 - 确保在使用bootstrap-select插件前已正确引入Bootstrap、jQuery以及插件自身的CSS和JS文件。 - 在页面中可能存在的其他JavaScript代码或插件可能与bootstrap-select发生冲突,所以需要仔细测试兼容性。 - 在自定义样式时,应确保不会影响插件的正常功能和响应式特性。 ### 总结 bootstrap-select插件大大增强了传统的HTML下拉列表,提供了多选和搜索功能,并且在不同设备上保持了良好的响应式表现。通过使用这个插件,开发者可以很容易地在他们的网站或应用中实现一个功能强大且用户体验良好的选择组件。在实际开发中,熟悉Bootstrap框架和jQuery技术将有助于更有效地使用bootstrap-select。
recommend-type

【戴尔的供应链秘密】:实现“零库存”的10大策略及案例分析

# 摘要 供应链管理的效率和效果在现代企业运营中发挥着至关重要的作用。本文首先概述了供应链管理的理论基础,随后深入探讨了零库存的概念及其对供应链优化的重要性。零库存管理通过降低库存持有成本和改善服务水平,实现了供应链的高效协同和库存风险的降低。文章通过戴尔公司的案例,分析了实现零库存的策略,包括精益生产、拉式系统、供应链协同、定制化与延迟差异化等。同时,文章
recommend-type

编写AT89C51汇编代码要求通过开关控制LED灯循环方向。要求:P1口连接8个LED,P0.0连接开关用以控制led流动方向。

编写AT89C51汇编代码来控制LED灯循环方向的基本步骤如下: 首先,我们需要定义一些寄存器和标志位。P1口用于输出LED状态,P0.0作为输入接开关。我们可以创建一个标志位如`DIR_FLAG`来存储LED流动的方向。 ```assembly ; 定义端口地址 P1 equ P1.0 ; LED on port P1 P0 equ P0.0 ; Switch on port P0 ; 定义标志位 DIR_FLAG db 0 ; 初始时LED向左流动 ; 主程序循环 LOOP_START: mov A, #0x0F ; 遍历LED数组,从0到7 led_loop:
recommend-type

Holberton系统工程DevOps项目基础Shell学习指南

标题“holberton-system_engineering-devops”指的是一个与系统工程和DevOps相关的项目或课程。Holberton School是一个提供计算机科学教育的学校,注重实践经验的培养,特别是在系统工程和DevOps领域。系统工程涵盖了一系列方法论和实践,用于设计和管理复杂系统,而DevOps是一种文化和实践,旨在打破开发(Dev)和运维(Ops)之间的障碍,实现更高效的软件交付和运营流程。 描述中提到的“该项目包含(0x00。shell,基础知识)”,则指向了一系列与Shell编程相关的基础知识学习。在IT领域,Shell是指提供用户与计算机交互的界面,可以是命令行界面(CLI)也可以是图形用户界面(GUI)。在这里,特别提到的是命令行界面,它通常是通过一个命令解释器(如bash、sh等)来与用户进行交流。Shell脚本是一种编写在命令行界面的程序,能够自动化重复性的命令操作,对于系统管理、软件部署、任务调度等DevOps活动来说至关重要。基础学习可能涉及如何编写基本的Shell命令、脚本的结构、变量的使用、控制流程(比如条件判断和循环)、函数定义等概念。 标签“Shell”强调了这个项目或课程的核心内容是围绕Shell编程。Shell编程是成为一名高级系统管理员或DevOps工程师必须掌握的技能之一,它有助于实现复杂任务的自动化,提高生产效率,减少人为错误。 压缩包子文件的文件名称列表中的“holberton-system_engineering-devops-master”表明了这是一个版本控制系统的项目仓库。在文件名中的“master”通常表示这是仓库的主分支,代表项目的主版本线。在多数版本控制系统中,如Git,master分支是默认的主分支,用于存放已经稳定的代码。此外,文件名中的“-master”结尾可能还暗示这是一个包含多个文件和目录的压缩包,包含了项目的所有相关代码和资源。 结合上述信息,我们可以知道,这个项目主要关注于DevOps中Shell脚本的编写和使用,这属于系统工程和DevOps基础技能。通过这个项目,用户能够学习到如何创建和维护自动化脚本,进而提高工作效率,加深对操作系统和命令行界面的理解。在DevOps实践中,自动化是一个核心概念,Shell脚本的编写能力可以帮助团队减少手动任务,确保部署流程的一致性和可重复性,这对维护高效率和高质量的软件交付流程至关重要。
recommend-type

Comsol传热模块实战演练:一文看懂热传导全过程

# 摘要 本文对Comsol传热模块进行了全面介绍,内容涵盖热传导的基础理论、模拟操作指南、以及高级模拟技巧。首先,文章概述了Comsol传热模块的主要功能和界面布局,随后深入探讨了热传导的基本理论,包括热传导的定义、分类、基本方程、数学模型建立、边界条件设定等。在操作指南章节中,本篇指导用户熟悉Comsol工具,进行有效建模和网格划分,并设置
recommend-type

生成一个600*70的文件上传区域图片

为了生成一个600x70像素的文件上传区域图片,通常可以使用HTML、CSS和JavaScript结合来创建一个简单的表单,包含一个File Input元素,显示为一个按钮或者预览区域。下面是一个简单的示例: ```html <!DOCTYPE html> <html lang="zh"> <head> <style> .upload-area { width: 600px; height: 70px; border: 1px solid #ccc; display: flex; justify-content: center; align-items: center
recommend-type

图的优先遍历及其算法实现解析

图的遍历是图论和算法设计中的一项基础任务,它主要用于搜索图中的节点并访问它们。图的遍历可以分为两大类:深度优先搜索(DFS)和广度优先搜索(BFS)。图的表示方法主要有邻接矩阵和邻接表两种,每种方法都有其特定的使用场景和优缺点。此外,处理无向图时,经常会用到最小生成树算法。下面详细介绍这些知识点。 首先,我们来探讨图的两种常见表示方法: 1. 邻接矩阵: 邻接矩阵是一种用二维数组表示图的方法。如果图有n个节点,则邻接矩阵是一个n×n的矩阵,其中matrix[i][j]表示节点i和节点j之间是否有边。如果i和j之间有直接的边,则matrix[i][j]为1(或者边的权重),否则为0。邻接矩阵的空间复杂度为O(n^2),它能够快速判断任意两个节点之间是否有直接的连接关系,但当图的边稀疏时,会浪费很多空间。 2. 邻接表: 邻接表使用链表数组的结构来表示图,每个节点都有一个链表,链表中存储了所有与该节点相邻的节点。邻接表的空间复杂度为O(V+E),其中V是节点数量,E是边的数量。对于稀疏图而言,邻接表比邻接矩阵更加节省空间。 接下来,我们讨论图的深度和广度优先搜索算法: 1. 深度优先搜索(DFS): 深度优先搜索是一种用于遍历或搜索树或图的算法。在图中执行DFS时,算法从一个顶点开始,沿着路径深入到一个节点,直到无法继续前进(即到达一个没有未探索相邻节点的节点),然后回溯到前一个节点,并重复这个过程,直到所有节点都被访问。深度优先搜索一般用递归或栈实现,其特点是可以得到一条从起点到终点的路径。 2. 广度优先搜索(BFS): 广度优先搜索也是一种遍历或搜索图的算法,其目的是系统地访问图中每一个节点。它从一个节点开始,先访问它的所有邻居,然后对每一个邻居节点,再次访问它们的邻居,依此类推。因此,BFS可以找到两个节点之间的最短路径(最少边的数量)。广度优先搜索通常使用队列实现。 最后,我们来看连通图的最小生成树算法: 1. 最小生成树(MST): 最小生成树是一个无向连通图的子图,它连接所有顶点,并且边的权值之和最小。处理最小生成树的两个著名算法是普里姆算法(Prim's Algorithm)和克鲁斯卡尔算法(Kruskal's Algorithm)。 - 普里姆算法从任意一个顶点开始,逐步增加新的顶点和边,直到包含所有顶点为止。每次选择连接已有顶点和未加入生成树的新顶点中权值最小的边,直到所有顶点都被加入。 - 克鲁斯卡尔算法从所有边中按权值从小到大排序开始,逐步增加边到最小生成树,只要这条边不会与已有的边构成环。通常使用并查集数据结构来维护哪些顶点已经连通。 以上就是关于图的优先遍历的相关知识点。这些算法和技术在计算机科学中应用广泛,不仅在理论研究中有重要地位,在实际问题中也扮演了关键角色,如网络设计、电路板设计、地图绘制等多个领域。
recommend-type

Comsol传热模块深度剖析:从入门到精通的5大步骤

# 摘要 本文全面介绍了Comsol传热模块的理论基础、应用实践及高级技巧。首先概述了传热学基本原理和Comsol Multiphysics平台功能。其次,详细讲解了如何建立传热模型、设置热分析类型与边界条件、模拟结果的可视化与后处理。第三部分探讨了多物理场耦合、参数化建模及模拟加速技术。最后,结合具体工程项目,分析了传热问题并分享了专家经验与学习资源。本