在信用卡违约预测中,如何使用Python的scikit-learn库实现并比较KNN、分类树、随机森林、逻辑回归和神经网络这五种数据挖掘方法的性能?
时间: 2024-10-26 16:06:16 浏览: 26
为了有效地应用KNN、分类树、随机森林、逻辑回归和神经网络等数据挖掘技术于信用卡违约预测,我们可以使用Python的scikit-learn库来实现并比较这些模型的性能。以下是详细的步骤和代码示例:
参考资源链接:[信用卡违约预测分析:数据挖掘技术应用](https://wenku.csdn.net/doc/6412b72fbe7fbd1778d49639?spm=1055.2569.3001.10343)
1. 数据预处理:首先,需要对数据进行清洗、编码、归一化等预处理操作。处理缺失值,将分类变量转换为数值型,使用例如StandardScaler或MinMaxScaler进行特征缩放。
```python
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
# 假设df是包含所有特征和标签的DataFrame
X = df.drop(['default'], axis=1) # 特征数据
y = df['default'] # 标签数据,违约情况
# 将标签编码为数值
le = LabelEncoder()
y_encoded = le.fit_transform(y)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.3, random_state=42)
# 特征缩放
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```
2. 模型实现:使用scikit-learn提供的各种模型实现算法。
```python
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
# KNN模型
knn = KNeighborsClassifier()
knn.fit(X_train_scaled, y_train)
# 分类树模型
clf = DecisionTreeClassifier()
clf.fit(X_train_scaled, y_train)
# 随机森林模型
rf = RandomForestClassifier()
rf.fit(X_train_scaled, y_train)
# 逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train_scaled, y_train)
# 神经网络模型
nn = MLPClassifier(hidden_layer_sizes=(100,), max_iter=300, random_state=1)
nn.fit(X_train_scaled, y_train)
```
3. 模型性能评估:使用准确率、召回率、F1分数等指标评估各模型性能。
```python
from sklearn.metrics import accuracy_score, recall_score, f1_score
# 定义评估函数
def evaluate_model(model, X_test, y_test):
predictions = model.predict(X_test_scaled)
accuracy = accuracy_score(y_test, predictions)
recall = recall_score(y_test, predictions)
f1 = f1_score(y_test, predictions)
return accuracy, recall, f1
# 评估各个模型
knn_eval = evaluate_model(knn, X_test_scaled, y_test)
clf_eval = evaluate_model(clf, X_test_scaled, y_test)
rf_eval = evaluate_model(rf, X_test_scaled, y_test)
lr_eval = evaluate_model(lr, X_test_scaled, y_test)
nn_eval = evaluate_model(nn, X_test_scaled, y_test)
print(
参考资源链接:[信用卡违约预测分析:数据挖掘技术应用](https://wenku.csdn.net/doc/6412b72fbe7fbd1778d49639?spm=1055.2569.3001.10343)
阅读全文