swin transformer中如何加入cbam注意力机制
时间: 2023-08-11 12:02:11 浏览: 605
在 Swin Transformer 中加入 CBAM(Convolutional Block Attention Module)注意力机制,可以通过以下步骤实现:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
```
2. 定义 CBAM 模块:
```python
class CBAM(nn.Module):
def __init__(self, channel, reduction=16):
super(CBAM, self).__init__()
self.channel = channel
self.reduction = reduction
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(self.channel, self.channel // self.reduction, kernel_size=1, stride=1, padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(self.channel // self.reduction, self.channel, kernel_size=1, stride=1, padding=0)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.avg_pool(x)
max_out = self.max_pool(x)
avg_out = self.fc1(avg_out)
avg_out = self.relu(avg_out)
avg_out = self.fc2(avg_out)
max_out = self.fc1(max_out)
max_out = self.relu(max_out)
max_out = self.fc2(max_out)
out = avg_out + max_out
out = self.sigmoid(out)
out = out.expand_as(x)
return out * x
```
3. 在 Swin Transformer 的基础上,在每个阶段的每个块之后添加 CBAM 模块:
```python
class SwinBlock(nn.Module):
def __init__(self, dim, num_heads, window_size, shift_size, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim, num_heads=num_heads, window_size=window_size, shift_size=shift_size,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
# 添加 CBAM 注意力机制
self.cbam = CBAM(dim)
def forward(self, x, mask_matrix):
x = x + self.drop_path(self.attn(self.norm1(x), mask_matrix))
x = x + self.drop_path(self.mlp(self.norm2(x)))
x = self.cbam(x) # 应用 CBAM 注意力机制
return x
```
通过以上步骤,你就可以在 Swin Transformer 中成功加入 CBAM 注意力机制。当然,这只是一个示例实现,你可以根据具体需求进行修改和优化。
阅读全文