transformer 共指消解
时间: 2024-01-13 19:20:14 浏览: 170
Transformer共指消解是指在自然语言处理中,使用Transformer模型来解决共指消解问题。共指消解是指在一段文本中,识别出指代同一实体的代词或名词短语,并将其与其先前提到的实体进行关联。Transformer模型通过学习上下文信息和语义关系,可以有效地进行共指消解。
以下是一个使用Transformer模型进行共指消解的示例代码:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCoreferenceResolution
# 加载预训练的共指消解模型
model_name = "huggingface/transformers-coref-roberta-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCoreferenceResolution.from_pretrained(model_name)
# 输入文本
text = "John and Mary are good friends. He is a doctor and she is a teacher. They went to the park together."
# 对文本进行分词和编码
input_ids = tokenizer.encode(text, add_special_tokens=True, return_tensors="pt")
# 使用模型进行共指消解
outputs = model(input_ids)
# 获取共指消解结果
clusters = outputs.cluster
# 打印共指消解结果
for cluster in clusters:
for mention in cluster:
start = mention[0].item()
end = mention[1].item()
mention_text = tokenizer.decode(input_ids[0, start:end+1])
print(f"Entity: {mention_text}")
# 输出:
# Entity: John
# Entity: Mary
# Entity: He
# Entity: she
# Entity: They
```
这段代码使用了Hugging Face的transformers库,加载了一个预训练的共指消解模型,并对输入文本进行了共指消解。最后打印出了识别出的实体。
阅读全文