yolov8微调代码
时间: 2023-11-06 07:09:25 浏览: 169
以下是一个基于PyTorch的YOLOv8微调代码的示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from dataset import CustomDataset
from model import YOLOv8
# 定义超参数
batch_size = 16
num_epochs = 10
learning_rate = 0.001
# 加载数据集
transform = transforms.Compose([
transforms.Resize((416, 416)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = CustomDataset('train.txt', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 加载模型
model = YOLOv8(num_classes=80)
model.load_state_dict(torch.load('yolov8n-seg.pt'))
# 冻结模型的前几层
for param in model.parameters():
param.requires_grad = False
for param in model.backbone.parameters():
param.requires_grad = False
# 修改模型的最后一层
model.head.conv[-1] = nn.Conv2d(256, 5 * 3, kernel_size=1, stride=1, padding=0)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i, (images, targets) in enumerate(train_loader):
# 前向传播
outputs = model(images)
# 计算损失
loss = 0
for j in range(3):
loss += criterion(outputs[j][:, :5, :, :], targets[j][:, :5, :, :])
loss /= 3
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 打印日志
if (i + 1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item()))
# 保存模型
torch.save(model.state_dict(), 'yolov8n-finetune.pt')
```
其中,`CustomDataset`和`YOLOv8`分别是自定义的数据集和模型,需要根据实际情况进行修改。在微调过程中,我们首先加载预训练模型`yolov8n-seg.pt`,然后冻结模型的前几层,修改模型的最后一层,定义损失函数和优化器,最后进行训练并保存微调后的模型`yolov8n-finetune.pt`。
阅读全文