禁忌遗传算法python实现
时间: 2023-11-18 10:55:45 浏览: 95
禁忌遗传算法是一种结合了禁忌搜索和遗传算法的优化算法。它通过遗传算法的交叉和变异操作来生成新的解,并通过禁忌搜索的方式来避免陷入局部最优解。下面是禁忌遗传算法的Python实现步骤:
1. 初始化种群:随机生成一定数量的初始解作为种群。
2. 评估适应度:对于每个个体,计算其适应度值。
3. 选择操作:根据适应度值选择一定数量的个体作为父代。
4. 交叉操作:对于选出的父代,进行交叉操作生成新的个体。
5. 变异操作:对于新生成的个体,进行变异操作。
6. 禁忌搜索:对于新生成的个体,进行禁忌搜索操作,避免陷入局部最优解。
7. 更新种群:将新生成的个体加入种群中。
8. 重复步骤2-7,直到达到预设的停止条件。
下面是一个简单的禁忌遗传算法的Python实现示例:
```
import random
# 初始化种群
def init_population(pop_size, chrom_size):
population = []
for i in range(pop_size):
chromosome = [random.randint(0, 1) for j in range(chrom_size)]
population.append(chromosome)
return population
# 计算适应度
def fitness(chromosome):
return sum(chromosome)
# 选择操作
def selection(population, fitness):
parents = []
for i in range(len(population)):
parent1 = random.choice(population)
parent2 = random.choice(population)
if fitness(parent1) > fitness(parent2):
parents.append(parent1)
else:
parents.append(parent2)
return parents
# 交叉操作
def crossover(parents, pc):
offspring = []
for i in range(0, len(parents), 2):
parent1 = parents[i]
parent2 = parents[i+1]
if random.random() < pc:
point = random.randint(1, len(parent1)-1)
offspring1 = parent1[:point] + parent2[point:]
offspring2 = parent2[:point] + parent1[point:]
offspring.append(offspring1)
offspring.append(offspring2)
else:
offspring.append(parent1)
offspring.append(parent2)
return offspring
# 变异操作
def mutation(offspring, pm):
for i in range(len(offspring)):
for j in range(len(offspring[i])):
if random.random() < pm:
offspring[i][j] = 1 - offspring[i][j]
return offspring
# 禁忌搜索
def tabu_search(solution, tabu_list, max_tabu_size):
best_solution = solution
best_fitness = fitness(solution)
for i in range(len(solution)):
for j in range(i+1, len(solution)):
if (i, j) not in tabu_list:
new_solution = solution.copy()
new_solution[i], new_solution[j] = new_solution[j], new_solution[i]
new_fitness = fitness(new_solution)
if new_fitness > best_fitness:
best_solution = new_solution
best_fitness = new_fitness
tabu_list.append((i, j))
if len(tabu_list) > max_tabu_size:
tabu_list.pop(0)
return best_solution
# 禁忌遗传算法
def tabu_genetic_algorithm(pop_size, chrom_size, max_iter, pc, pm, max_tabu_size):
population = init_population(pop_size, chrom_size)
for i in range(max_iter):
fitness_values = [fitness(chromosome) for chromosome in population]
parents = selection(population, fitness_values)
offspring = crossover(parents, pc)
offspring = mutation(offspring, pm)
for j in range(len(offspring)):
offspring[j] = tabu_search(offspring[j], [], max_tabu_size)
population = parents + offspring
best_chromosome = max(population, key=fitness)
best_fitness = fitness(best_chromosome)
return best_chromosome, best_fitness
# 测试
chrom_size = 10
pop_size = 50
max_iter = 100
pc = 0.8
pm = 0.1
max_tabu_size = 10
best_chromosome, best_fitness = tabu_genetic_algorithm(pop_size, chrom_size, max_iter, pc, pm, max_tabu_size)
print("Best solution:", best_chromosome)
print("Best fitness:", best_fitness)
```
阅读全文