yolov8怎么用网络摄像头
时间: 2023-11-08 15:02:07 浏览: 174
YOLOv8的手机摄像头的自动检测数据集
5星 · 资源好评率100%
要使用Yolov8网络摄像头,你可以按照以下步骤进行操作:
1. 首先,确保你已经安装了OpenCV库。你可以使用pip命令进行安装:`pip install opencv-python`
2. 导入所需的库:
```python
import cv2
import numpy as np
from darknet import Darknet
```
3. 加载预训练的Yolov8模型和类别标签:
```python
model_cfg = 'yolov8.cfg' # Yolov8模型的配置文件
model_weights = 'yolov8.weights' # Yolov8模型的权重文件
class_labels = 'coco.names' # 类别标签文件
m = Darknet(model_cfg)
m.load_weights(model_weights)
classes = []
with open(class_labels, 'r') as f:
classes = [line.strip() for line in f.readlines()]
```
4. 初始化摄像头:
```python
camera = cv2.VideoCapture(0) # 0代表默认摄像头,如果有多个摄像头可以选择不同的索引值
```
5. 循环读取摄像头视频帧并进行目标检测:
```python
while True:
ret, frame = camera.read()
if not ret:
break
sized = cv2.resize(frame, (m.width, m.height))
sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)
boxes = do_detect(m, sized, 0.4, 0.6, use_cuda) # 执行目标检测
# 在图像上绘制检测到的边界框和类别标签
for box in boxes[0]:
x, y, w, h = box[:4]
cls_id = int(box[6])
label = f'{classes[cls_id]}'
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
cv2.imshow('Yolov8', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
```
6. 最后,释放摄像头和销毁窗口:
```python
camera.release()
cv2.destroyAllWindows()
```
阅读全文