用python对C盘导入的数据集实现线性回归,训练和预测,评估模型的拟合能力获得训练数据和标记的完整代码
时间: 2024-10-10 07:15:40 浏览: 54
在Python中,我们可以使用scikit-learn库来实现C盘中的数据集的线性回归。首先,确保你已经安装了所需的库,如果没有,可以使用pip安装:
```bash
pip install numpy pandas scikit-learn matplotlib
```
假设你的数据集是一个CSV文件,包含两列数据(一列自变量X,一列因变量y),你可以按照以下步骤操作:
1. 导入必要的库:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
```
2. 加载并预处理数据:
```python
# 将C盘路径替换为你实际的数据集路径
data_path = 'C:/path/to/your/dataset.csv'
# 加载数据
df = pd.read_csv(data_path)
X = df.iloc[:, :-1].values # 特征数据
y = df.iloc[:, -1].values # 目标值
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. 训练线性回归模型:
```python
model = LinearRegression()
model.fit(X_train, y_train)
```
4. 预测并评估模型:
```python
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error (MSE): {mse}")
print(f"R^2 Score (Coefficient of Determination): {r2}")
```
5. 可视化结果:
```python
plt.scatter(X_test, y_test, color='blue')
plt.plot(X_test, y_pred, color='red', linewidth=2)
plt.xlabel('Feature')
plt.ylabel('Target')
plt.title('Linear Regression Visualization')
plt.show()
```
阅读全文