kmp算法acwing

时间: 2024-06-19 16:00:34 浏览: 19
KMP算法,全称为Knuth-Morris-Pratt算法,是由Donald Knuth、James Morris和Vance Pratt在1970年代独立开发的一种字符串匹配算法。它是一种高效的模式匹配算法,用于在一个文本串中查找指定的子串。与朴素的线性搜索相比,KMP算法具有更好的时间复杂度,能在最坏情况下达到O(n + m),其中n是文本串的长度,m是子串的长度。 在ACWing这样的编程教育平台上,KMP算法通常作为数据结构和算法中的高级主题进行讲解,因为理解并实现它需要对动态规划和状态转移的思想有深入的理解。以下是KMP算法的一些关键概念: 1. **部分匹配表(Partial Match Table, PMT)**:这是KMP算法的核心,是一个预先计算好的数组,用于存储模式串的前缀和后缀公共部分的长度,帮助我们在匹配过程中避免无效的字符比较。 2. **状态转移**:算法会根据PMT找到当前字符和目标串中上一个成功匹配字符的位置差值,决定下一步匹配的位置,减少了回溯的次数。 3. **失败跳转**:如果遇到不匹配的字符,我们不是直接后移一位,而是根据PMT信息跳过一定位置,避免了重复搜索已经匹配过的部分。
相关问题

使用kmp算法

好的,下面我来为您讲解使用KMP算法解决字符串匹配问题的方法。 KMP算法是一种比较高效的字符串匹配算法,它的核心思想是利用已经匹配过的信息,尽可能减少不必要的字符比较次数,从而提高匹配效率。具体实现时,KMP算法利用前缀和后缀的概念,对于每个字符,计算出它的最长前缀和最长后缀的匹配长度,然后根据这些信息来移动模式串,从而减少比较次数。 下面是使用KMP算法解决字符串匹配问题的代码实现: ```python def str_str(s, n): if not n: return 0 if not s: return -1 m, k = len(s), len(n) next = get_next(n) i = j = 0 while i < m and j < k: if j == -1 or s[i] == n[j]: i += 1 j += 1 else: j = next[j] if j == k: return i - k else: return -1 def get_next(n): k, j = -1, 0 next = [-1] * len(n) while j < len(n) - 1: if k == -1 or n[k] == n[j]: k += 1 j += 1 next[j] = k else: k = next[k] return next ``` 需要注意的是,KMP算法中的next数组表示的是模式串中每个位置的最长前缀和最长后缀的匹配长度,而不是暴力匹配算法中的每个位置的最长前缀和最长后缀。因此,KMP算法中的next数组需要先计算出来,然后再根据它来移动模式串。 接下来,我来给您提供一组测试用例,证明KMP算法的正确性: ```python assert str_str("hello", "ll") == 2 assert str_str("aaaaa", "bba") == -1 assert str_str("mississippi", "issip") == 4 ``` 这些测试用例可以验证KMP算法的正确性。相比暴力匹配算法,KMP算法的时间复杂度为O(m+n),可以在较短的时间内解决字符串匹配问题。

c++实现kmp算法

KMP算法是一种字符串匹配算法,它的时间复杂度为O(m+n),其中m和n分别为模式串和匹配串的长度。KMP算法的核心思想是利用已知信息,尽可能减少无效的比较次数。 C++实现KMP算法的关键在于构建next数组,该数组表示当匹配失败时,下一次从哪个位置开始继续匹配。以下是KMP算法的C++实现: ``` #include <iostream> #include <cstring> using namespace std; void getNext(char *pattern, int next[]) { int n = strlen(pattern); next = -1; int k = -1; for (int i = 1; i < n; i++) { while (k != -1 && pattern[k+1] != pattern[i]) { k = next[k]; } if (pattern[k+1] == pattern[i]) { k++; } next[i] = k; } } void KMP(char *text, char *pattern) { int m = strlen(text), n = strlen(pattern); int next[n]; getNext(pattern, next); int j = -1; for (int i = 0; i < m; i++) { while (j != -1 && pattern[j+1] != text[i]) { j = next[j]; } if (pattern[j+1] == text[i]) { j++; } if (j == n-1) { cout << "Pattern found at index " << i-n+1 << endl; j = next[j]; } } } int main() { char text[] = "ABABCABABCD"; char pattern[] = "ABABCD"; KMP(text, pattern); return 0; } ```

相关推荐

最新推荐

recommend-type

kMP算法JavakMP算法JavakMP算法JavakMP算法Java

kMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法JavakMP算法Java...
recommend-type

C++ 数据结构之kmp算法中的求Next()函数的算法

"C++ 数据结构之kmp算法中的求Next()函数的算法" KMP算法(Knuth-Morris-Pratt算法)是一种字符串匹配算法,由Donald Knuth、Vaughan Pratt和James H. Morris三人于1977年共同发表。该算法的主要思想是,通过构建一...
recommend-type

KMP串匹配算法,并行计算

而且,串匹配是这些应用中最耗时的核心问题,好的串匹配算法能显著地提高应用的效率。因此,研究并设计快速的串匹配算法具有重要的理论价值和实际意义。 串匹配问题实际上就是一种模式匹配问题,即在给定的文本串中...
recommend-type

数据结构课程设计实验报告-KMP算法的实现

KMP算法是对一般模式匹配算法的改进,由D.E.Knuth与V.R.Pratt和J.H.Morris 同时发现的因此人们称它为克努特-莫里斯-莫拉特操作(简称为KMP算法)。 对于一般的模式匹配算法:分别利用两个指针i和j指示主串S和T中的...
recommend-type

KMP算法详解够详细了

个人觉得这篇文章是网上的介绍有关KMP算法更让人容易理解的文章了,确实说得很“详细”,耐心地把它看完肯定会有所收获的~~,另外有关模式函数值next[i]确实有很多版本啊,在另外一些面向对象的算法描述书中也有...
recommend-type

GO婚礼设计创业计划:技术驱动的婚庆服务

"婚礼GO网站创业计划书" 在创建婚礼GO网站的创业计划书中,创业者首先阐述了企业的核心业务——GO婚礼设计,专注于提供计算机软件销售和技术开发、技术服务,以及与婚礼相关的各种服务,如APP制作、网页设计、弱电工程安装等。企业类型被定义为服务类,涵盖了一系列与信息技术和婚礼策划相关的业务。 创业者的个人经历显示了他对行业的理解和投入。他曾在北京某科技公司工作,积累了吃苦耐劳的精神和实践经验。此外,他在大学期间担任班长,锻炼了团队管理和领导能力。他还参加了SYB创业培训班,系统地学习了创业意识、计划制定等关键技能。 市场评估部分,目标顾客定位为本地的结婚人群,特别是中等和中上收入者。根据数据显示,广州市内有14家婚庆公司,该企业预计能占据7%的市场份额。广州每年约有1万对新人结婚,公司目标接待200对新人,显示出明确的市场切入点和增长潜力。 市场营销计划是创业成功的关键。尽管文档中没有详细列出具体的营销策略,但可以推断,企业可能通过线上线下结合的方式,利用社交媒体、网络广告和本地推广活动来吸引目标客户。此外,提供高质量的技术解决方案和服务,以区别于竞争对手,可能是其市场差异化策略的一部分。 在组织结构方面,未详细说明,但可以预期包括了技术开发团队、销售与市场部门、客户服务和支持团队,以及可能的行政和财务部门。 在财务规划上,文档提到了固定资产和折旧、流动资金需求、销售收入预测、销售和成本计划以及现金流量计划。这表明创业者已经考虑了启动和运营的初期成本,以及未来12个月的收入预测,旨在确保企业的现金流稳定,并有可能享受政府对大学生初创企业的税收优惠政策。 总结来说,婚礼GO网站的创业计划书详尽地涵盖了企业概述、创业者背景、市场分析、营销策略、组织结构和财务规划等方面,为初创企业的成功奠定了坚实的基础。这份计划书显示了创业者对市场的深刻理解,以及对技术和婚礼行业的专业认识,有望在竞争激烈的婚庆市场中找到一席之地。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【基础】PostgreSQL的安装和配置步骤

![【基础】PostgreSQL的安装和配置步骤](https://img-blog.csdnimg.cn/direct/8e80154f78dd45e4b061508286f9d090.png) # 2.1 安装前的准备工作 ### 2.1.1 系统要求 PostgreSQL 对系统硬件和软件环境有一定要求,具体如下: - 操作系统:支持 Linux、Windows、macOS 等主流操作系统。 - CPU:推荐使用多核 CPU,以提高数据库处理性能。 - 内存:根据数据库规模和并发量确定,一般建议 8GB 以上。 - 硬盘:数据库文件和临时文件需要占用一定空间,建议预留足够的空间。
recommend-type

字节跳动面试题java

字节跳动作为一家知名的互联网公司,在面试Java开发者时可能会关注以下几个方面的问题: 1. **基础技能**:Java语言的核心语法、异常处理、内存管理、集合框架、IO操作等是否熟练掌握。 2. **面向对象编程**:多态、封装、继承的理解和应用,可能会涉及设计模式的提问。 3. **并发编程**:Java并发API(synchronized、volatile、Future、ExecutorService等)的使用,以及对并发模型(线程池、并发容器等)的理解。 4. **框架知识**:Spring Boot、MyBatis、Redis等常用框架的原理和使用经验。 5. **数据库相
recommend-type

微信行业发展现状及未来发展趋势分析

微信行业发展现状及未来行业发展趋势分析 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信月活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。 微信作为流量枢纽,已经成为移动互联网的基础设施,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 中国的整体移动互联网人均单日使用时长已经较高水平。18Q1中国移动互联网的月度总时长达到了77千亿分钟,环比17Q4增长了14%,单人日均使用时长达到了273分钟,环比17Q4增长了15%。而根据抽样统计,社交始终占据用户时长的最大一部分。2018年3月份,社交软件占据移动互联网35%左右的时长,相比2015年减少了约10pct,但仍然是移动互联网当中最大的时长占据者。 争夺社交软件份额的主要系娱乐类App,目前占比达到约32%左右。移动端的流量时长分布远比PC端更加集中,通常认为“搜索下載”和“网站导航”为PC时代的流量枢纽,但根据统计,搜索的用户量约为4.5亿,为各类应用最高,但其时长占比约为5%左右,落后于网络视频的13%左右位于第二名。PC时代的网络社交时长占比约为4%-5%,基本与搜索相当,但其流量分发能力远弱于搜索。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。