overlap_ratioslice_size
时间: 2023-10-25 10:04:57 浏览: 159
overlap_ratio slice_size是指在数据处理中,用于切割数据的两个参数。
overlap_ratio(重叠比例)是指在进行数据切割时,相邻切片之间的重叠区域所占的比例。如果重叠比例设置得很小,那么相邻切片之间的重叠区域将很小,可能会导致一些信息的丢失。而如果重叠比例设置得太大,那么切片之间的重叠区域将会很大,可能会导致数据冗余,增加计算的复杂度。
slice_size(切片大小)是指进行数据切割时的每个切片的尺寸。切片大小的选择取决于具体的数据特征和应用需求。如果切片大小设置得很大,那么每个切片中包含的数据量将会很多,可能会导致计算的时间和内存的需求增加。而如果切片大小设置得很小,那么每个切片中包含的数据量将会很小,可能会导致一些局部信息的丢失。
在实际应用过程中,合理设置overlap_ratio和slice_size可以根据实际需求来进行调整。通常情况下,我们希望在保持重叠区域小和计算复杂度低的情况下,尽量维持切片大小适中,以充分利用数据的信息并减少计算资源的需求。同时,也可以根据具体领域和任务的特点,对overlap_ratio和slice_size进行优化,以获得更好的数据切片效果。
相关问题
解释下这段代码: while len(idxs) > 0: last = len(idxs) - 1 i = idxs[last] pick.append(i) # keep top k if keep_top_k != -1: if len(pick) >= keep_top_k: break overlap_xmin = np.maximum(xmin[i], xmin[idxs[:last]]) overlap_ymin = np.maximum(ymin[i], ymin[idxs[:last]]) overlap_xmax = np.minimum(xmax[i], xmax[idxs[:last]]) overlap_ymax = np.minimum(ymax[i], ymax[idxs[:last]]) overlap_w = np.maximum(0, overlap_xmax - overlap_xmin) overlap_h = np.maximum(0, overlap_ymax - overlap_ymin) overlap_area = overlap_w * overlap_h overlap_ratio = overlap_area / (area[idxs[:last]] + area[i] - overlap_area) need_to_be_deleted_idx = np.concatenate(([last], np.where(overlap_ratio > iou_thresh)[0])) idxs = np.delete(idxs, need_to_be_deleted_idx) # if the number of final bboxes is less than keep_top_k, we need to pad it. # TODO return conf_keep_idx[pick]
这是一个非极大值抑制(Non-Maximum Suppression,简称NMS)的代码实现,用于去除重叠的边界框。输入为一组边界框(bounding boxes)及其对应的置信度(confidence scores),输出为经过NMS后剩余的边界框的索引。
具体实现过程如下:
1. 首先将所有边界框按照置信度从高到低排序。
2. 取出置信度最高的边界框,并将其加入最终输出列表中。
3. 计算当前边界框与剩余边界框的重叠部分,如果重叠部分的面积占总面积的比例大于一定阈值(iou_thresh),则将该边界框删除。
4. 重复第2步和第3步,直到所有的边界框都被处理完毕。
5. 如果最终输出的边界框数量少于指定的保留数量(keep_top_k),则需要进行填充,这里还未实现。
最终返回的是经过NMS后剩余的边界框的索引。
import arcpy # 定义空间连接函数 def spatial_join(input_features, target_features, overlap_threshold, output_features): # 创建空间连接对象 join_operation = "JOIN_ONE_TO_ONE" join_type = "KEEP_ALL" field_mapping = "" match_option = "INTERSECT" search_radius = "" distance_field_name = "" spatial_join = arcpy.SpatialJoin_analysis(input_features, target_features, output_features, join_operation, join_type, field_mapping, match_option, search_radius, distance_field_name) # 过滤结果 overlap_field = "SHAPE@AREA" with arcpy.da.UpdateCursor(spatial_join, overlap_field) as cursor: for row in cursor: if row[0] < overlap_threshold: cursor.deleteRow() del cursor # 设置工具箱参数 input_features = arcpy.GetParameterAsText(0) target_features = arcpy.GetParameterAsText(1) overlap_threshold = arcpy.GetParameterAsText(2) output_features = arcpy.GetParameterAsText(3) # 运行空间连接函数 spatial_join(input_features, target_features, overlap_threshold, output_features) # 完成工具箱输出 arcpy.SetParameterAsText(3, output_features)运行代码输出成果要素图层数据为空,请改正代码
根据你提供的代码,可能存在以下问题:
1. `arcpy.SpatialJoin_analysis()`函数返回的是一个字符串类型的路径,而不是要素图层对象。因此,在过滤结果时,应该使用`spatial_join`字符串作为输入,而不是要素图层对象。
2. `overlap_threshold`参数应该是一个数字类型的阈值,而不是字符串类型。因此,在调用`spatial_join()`函数时,应该将其转换为浮点数类型。
修改后的代码如下:
```python
import arcpy
def spatial_join(input_features, target_features, overlap_threshold, output_features):
# 创建空间连接对象
join_operation = "JOIN_ONE_TO_ONE"
join_type = "KEEP_ALL"
field_mapping = ""
match_option = "INTERSECT"
search_radius = ""
distance_field_name = ""
spatial_join = arcpy.SpatialJoin_analysis(input_features, target_features, output_features, join_operation, join_type, field_mapping, match_option, search_radius, distance_field_name)
# 过滤结果
overlap_field = "SHAPE@AREA"
with arcpy.da.UpdateCursor(spatial_join, overlap_field) as cursor:
for row in cursor:
if row[0] < float(overlap_threshold):
cursor.deleteRow()
del cursor
# 设置工具箱参数
input_features = arcpy.GetParameterAsText(0)
target_features = arcpy.GetParameterAsText(1)
overlap_threshold = float(arcpy.GetParameterAsText(2))
output_features = arcpy.GetParameterAsText(3)
# 运行空间连接函数
spatial_join(input_features, target_features, overlap_threshold, output_features)
# 完成工具箱输出
arcpy.SetParameterAsText(3, output_features)
```
注意,在调用`arcpy.GetParameterAsText()`函数获取参数时,返回的是字符串类型,需要根据参数的实际类型进行转换。
阅读全文