yolov8中sppf加入dcnv4
时间: 2025-01-13 21:57:19 浏览: 38
集成DCNv4至YOLOv8的SPPF模块
在YOLOv8架构中引入可变形卷积网络第四版(DCNv4),能够增强模型的空间采样灵活性,从而提升特征提取能力。为了将DCNv4集成到空间金字塔池化(SPP)跟随层融合(Follow Fusion, SPPF),需修改原有框架中的相应部分。
修改配置文件
首先,在定义网络结构时应调整配置文件以适应新组件加入的要求[^1]:
# yolov8_custom.yaml
backbone:
...
neck:
sppf:
type: CustomSPPFWithDCNV4
dcn_version: 'v4'
...
自定义SPPF类
接着创建自定义CustomSPPFWithDCNV4
类来替代默认版本,并在此基础上添加对DCNv4的支持:
import torch.nn as nn
from models.common import Conv
from utils.general import make_divisible
class DeformConv2dV4(nn.Module):
"""A simplified implementation of deformable convolution v4."""
def __init__(self, inc, outc, kernel_size=3, padding=1, stride=1, bias=None, modulation=True):
super().__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
# Define offset and mask generation layers here based on DCNv4 specifications.
...
class CustomSPPFWithDCNV4(nn.Module):
"""
Spatial Pyramid Pooling - Fast (SPPF) layer with integrated DCNv4 for YOLOv8.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (Union[int, tuple]): Kernel size(s).
e (float): Expansion ratio used to calculate hidden dimension from `c1`.
"""
def __init__(self, c1, c2, k=(5,), e=0.5):
super().__init__()
c_ = int(make_divisible(c2 * e))
self.cv1 = Conv(c1=c1, c2=c_, k=k[0], s=1)
# Replace standard convolutions within the SPP block by DCNv4 instances.
self.dconv = DeformConv2dV4(
inc=c_,
outc=c_,
kernel_size=k[-1],
padding=k[-1] // 2,
stride=1,
bias=False,
modulation=True
)
self.act = nn.ReLU(inplace=True)
self.pool_adds = sum([k ** 2 for k in k]) / len(k)**2
def forward(self, x):
y = self.cv1(x)
return self.act(y + self.dconv(y)) * math.sqrt(self.pool_adds)
上述代码展示了如何通过继承并扩展原始SPPF类的方式融入最新的可变形卷积技术——即DCNv4。注意这里仅提供了一个简化版的DeformConv2dV4
实现;实际应用中可能还需要根据具体需求进一步优化该函数内部逻辑以及参数设置。
相关推荐


















