``` import pandas as pd frame=pd.read_csv('customer.csv')```查询不同年龄段的会员人数(以10岁为一段),以1990年作为当前时间,会员出生日期列名为“birthdate",根据已知代码写出完整代码
时间: 2024-09-27 18:12:08 浏览: 36
快速解决pandas.read_csv()乱码的问题
5星 · 资源好评率100%
当然,根据您提供的代码片段,我们可以使用Pandas库来处理这个问题。首先,我们需要将'birthdate'列转换成日期类型,然后计算每个年龄段的会员数。以下是完整的Python代码:
```python
import pandas as pd
# 假设 customer.csv 文件已经存在,且有 'birthdate' 列
# 假设年龄是以年为单位的,我们从1990年开始计算
current_year = 1990
# 读取csv文件
frame = pd.read_csv('customer.csv')
# 将 'birthdate' 列转换为日期类型
frame['birthdate'] = pd.to_datetime(frame['birthdate'])
# 计算会员的年龄
frame['age'] = current_year - frame['birthdate'].dt.year
# 将年龄区间设置为每10年一个段落,并分组计数
age_groups = frame.groupby(pd.cut(frame['age'], bins=range(0, 101, 10)))
# 获取每个年龄段的会员人数
member_counts = age_groups.size()
# 输出结果
print(member_counts)
```
阅读全文