stm32h743 和fpga 通信

时间: 2024-01-28 21:02:09 浏览: 200
STM32H743和FPGA通信的实现可以通过各种方式来实现,这里介绍一种常见的方法。 首先,我们可以使用STM32H743的GPIO引脚将其与FPGA的GPIO引脚连接起来。这些引脚可以通过FPGA的IO管脚映射到特定的数据和控制信号线上。然后,在STM32H743中编写相应的代码,配置这些GPIO引脚作为输入或输出,并控制它们的状态,以与FPGA进行通信。 其次,我们可以使用通用的串行通信接口(如SPI或I2C)来实现STM32H743和FPGA之间的通信。通过连接STM32H743的SPI或I2C接口到FPGA的相应引脚上,我们可以在STM32H743上配置和控制SPI或I2C总线,并与FPGA进行数据传输和通信。 另外,如果需要高速数据传输,我们还可以使用外部总线接口(如SDRAM、Ethernet等)来实现STM32H743和FPGA之间的通信。通过配置STM32H743的外部总线接口并连接到FPGA上,我们可以实现高速数据传输和通信。 总的来说,STM32H743和FPGA之间的通信可以通过GPIO引脚、串行通信接口或外部总线接口来实现。具体选择哪种方法取决于通信的需求和硬件的支持。在实际的应用中,我们需要根据具体的场景和需求来选择最合适的通信方式。
相关问题

STM32通过FSMC与FPGA通信 代码

以下是STM32通过FSMC与FPGA进行通信的示例代码: 首先,需要在STM32的CubeMX中配置FSMC接口。具体配置方法如下: 1. 打开CubeMX,选择STM32芯片型号和对应的工程。 2. 在"Pinout"选项卡中,将FSMC的引脚与FPGA的引脚连接。 3. 在"Configuration"选项卡中,选择"FSMC"接口,并进行相应的配置,如时序、读写模式等。配置完成后,生成代码。 接下来,可以参考以下示例代码进行通信: ``` #include "stm32f4xx.h" #include "stm32f4xx_hal.h" #define FPGA_BASE_ADDRESS 0x60000000 // FPGA的基地址 void FSMC_Init(void) { FSMC_NORSRAM_TimingTypeDef Timing; FSMC_NORSRAM_InitTypeDef Init; // 使能FSMC时钟 __HAL_RCC_FSMC_CLK_ENABLE(); // 配置FSMC时序 Timing.AddressSetupTime = 0x02; Timing.AddressHoldTime = 0x00; Timing.DataSetupTime = 0x05; Timing.BusTurnAroundDuration = 0x00; Timing.CLKDivision = 0x00; Timing.DataLatency = 0x00; Timing.AccessMode = FSMC_ACCESS_MODE_A; // 配置FSMC NOR/SRAM Bank1 Init.NSBank = FSMC_NORSRAM_BANK1; Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE; Init.MemoryType = FSMC_MEMORY_TYPE_SRAM; Init.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_16; Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE; Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW; Init.WrapMode = FSMC_WRAP_MODE_DISABLE; Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS; Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE; Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE; Init.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE; Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE; Init.WriteBurst = FSMC_WRITE_BURST_DISABLE; Init.PageSize = FSMC_PAGE_SIZE_NONE; // 初始化FSMC HAL_FSMC_Init(&Init); HAL_FSMC_ConfigNORFlashTiming(&Timing, FSMC_NORSRAM_BANK1, FSMC_NORSRAM_TIMING_READ_WRITE_ENABLE); // 使能FSMC Bank1 __HAL_RCC_FSMC_FORCE_RESET(); __HAL_RCC_FSMC_RELEASE_RESET(); } void FSMC_WriteData(uint16_t data) { *(volatile uint16_t *)(FPGA_BASE_ADDRESS) = data; } uint16_t FSMC_ReadData(void) { return *(volatile uint16_t *)(FPGA_BASE_ADDRESS); } int main(void) { FSMC_Init(); while (1) { // 向FPGA写入数据 FSMC_WriteData(0x1234); // 从FPGA读取数据 uint16_t data = FSMC_ReadData(); } } ``` 在上述示例代码中,首先需要初始化FSMC接口。然后,可以使用`FSMC_WriteData`函数向FPGA写入数据,使用`FSMC_ReadData`函数从FPGA读取数据。在这里,我们假设FPGA的基地址是`0x60000000`,因此可以使用指针来进行读写操作。注意,在读取数据时需要使用`volatile`关键字,以确保编译器不会对指针进行优化。

fpga和stm32通信代码

FPGA和STM32可以通过多种接口进行通信,例如SPI、I2C、UART等。下面以SPI接口为例,介绍如何在STM32和FPGA之间进行通信。 在STM32上,需要通过HAL库和SPI驱动程序进行配置和使用SPI接口。以下是一个简单的STM32和FPGA之间SPI通信的代码示例: ```c #include "stm32f4xx_hal.h" SPI_HandleTypeDef hspi1; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_SPI1_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_SPI1_Init(); while (1) { uint8_t tx_data = 0x55; uint8_t rx_data; HAL_SPI_TransmitReceive(&hspi1, &tx_data, &rx_data, 1, 100); // 发送一个字节的数据并接收一个字节的数据 } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1 |RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } static void MX_SPI1_Init(void) { hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; // 主设备 hspi1.Init.Direction = SPI_DIRECTION_2LINES; // 双向传输 hspi1.Init.DataSize = SPI_DATASIZE_8BIT; // 数据位宽为8位 hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; // 时钟极性为低 hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; // 时钟相位为第一边沿 hspi1.Init.NSS = SPI_NSS_SOFT; // 软件片选 hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; // 时钟分频系数为256 hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; // MSB优先 hspi1.Init.TIMode = SPI_TIMODE_DISABLE; // 不使用 TI 模式 hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; // 不使用 CRC 校验 if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF5_SPI1; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_4; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; // 片选引脚作为输出 GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); } ``` 在FPGA上,需要根据所使用的开发板和FPGA型号,进行相应的配置和编程。以下是一个简单的FPGA SPI接口的代码示例: ```vhdl library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; entity spi_interface is port ( clk : in std_logic; reset : in std_logic; mosi : in std_logic; miso : out std_logic; cs : out std_logic ); end spi_interface; architecture Behavioral of spi_interface is signal sclk : std_logic; signal ssel : std_logic; signal tx_data : std_logic_vector(7 downto 0); signal rx_data : std_logic_vector(7 downto 0); signal data_valid : std_logic := '0'; begin process(clk, reset) begin if reset = '1' then sclk <= '0'; ssel <= '1'; elsif rising_edge(clk) then if ssel = '0' then if tx_data'length > 0 then mosi <= tx_data(0); tx_data <= tx_data(1 to tx_data'high); sclk <= not sclk; else tx_data <= (others => '0'); rx_data <= (others => '0'); data_valid <= '0'; ssel <= '1'; end if; else mosi <= 'Z'; data_valid <= '0'; sclk <= '0'; if cs = '0' then ssel <= '0'; rx_data <= (others => 'Z'); end if; end if; end if; end process; miso <= rx_data(0); process(clk) begin if rising_edge(clk) then if cs = '0' and ssel = '0' then rx_data <= miso & rx_data(7 downto 1); if sclk = '1' then data_valid <= '1'; end if; end if; end if; end process; end Behavioral; ``` 以上是一个简单的FPGA SPI接口的代码示例,需要根据实际情况进行修改和调试。在使用FPGA通信时,需要注意时序和信号电平的匹配,以确保通信正常。
阅读全文

相关推荐

大家在看

recommend-type

基于CDMA-TDOA的室内超声波定位系统 (2012年)

针对国内外对室内定位技术中定位精度不高问题,提出一种基于CDMA( Code Division Multiple Access) - TDOA( Time Difference of Arrival)的室内超声波定位系统,并给出实时性差异等缺点,进行了其工作原理和超声波信号的分析。该系统基于射频和超声波传感器的固有性质,对超声波信号采用CDMA技术进行编码,以便在目标节点上能区分各个信标发来的超声波信号,并结合射频信号实现TDOA测距算法,最终实现三维定位。采用Matlab/Simulink模块对3个信标
recommend-type

如何降低开关电源纹波噪声

1、什么是纹波? 2、纹波的表示方法 3、纹波的测试 4、纹波噪声的抑制方法
recommend-type

西安石油大学2019-2023 计算机考研808数据结构真题卷

西安石油大学2019-2023 计算机考研808数据结构真题卷,希望能够帮助到大家
recommend-type

AWS(亚马逊)云解决方案架构师面试三面作业全英文作业PPT

笔者参加亚马逊面试三面的作业,希望大家参考,少走弯路。
recommend-type

python大作业基于python实现的心电检测源码+数据+详细注释.zip

python大作业基于python实现的心电检测源码+数据+详细注释.zip 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 【3】项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 【4】如果基础还行,或热爱钻研,可基于此项目进行二次开发,DIY其他不同功能,欢迎交流学习。 【备注】 项目下载解压后,项目名字和项目路径不要用中文,否则可能会出现解析不了的错误,建议解压重命名为英文名字后再运行!有问题私信沟通,祝顺利! python大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zip python大作业基于python实现的心电检测源码+数据+详细注释.zip

最新推荐

recommend-type

STM32H743核心板原理图.pdf

STM32H743核心板原理图.pdf 本资源为STM32H743IIT6微控制器开发板的原理图,板载NANDFLASH、QSPIFLASH、TF、RGB接口等...STM32H743IIT6微控制器开发板原理图展示了丰富的外设接口和功能,能够满足各种应用场景的需求。
recommend-type

STM32的使用之SPI通信DMA模式

在STM32F303VC微控制器中,我们可以使用SPI通信DMA模式来实现自动数据的发送和接收。下面是基本步骤: 1. 配置好SPI相应引脚功能 2. 配置和初始化SPI 3. 初始化DMA 4. 片选信号选择要通信的设备 5. 打开DMA对应DMA...
recommend-type

FPGA作为从机与STM32进行SPI协议通信---Verilog实现

在本文中,FPGA与STM32通过SPI3方式进行通信。STM32端需配置SPI1,设置CPOL=1,CPHA=1。在FPGA端,我们需要检测SCK的上升沿和下降沿,以此确定何时采样数据和何时发送数据。在数据采样和发送过程中,通常是从高位到...
recommend-type

STM32H7U盘主机Host中文代码详解.pdf

STM32H7U盘主机Host中文代码详解主要聚焦于STM32Cube™ USB 主机库,这是一个中间件模块,用于在STM32H743微控制器上实现USB主机功能,尤其针对U盘存储。STM32Cube是意法半导体(STMicroelectronics)提供的一款免费...
recommend-type

STM32如何配置使用SPI通信

STM32通常有2~3个SPI接口,根据STM32手册的使用方法,我们可以按照以下步骤来配置和使用SPI通信: 1. 启用外设时钟:首先,我们需要启用SPI外设的时钟,否则SPI将无法工作。 2. 启用SCK、MOSI、MISO和NSS GPIO时钟...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"