stm32h743 和fpga 通信
时间: 2024-01-28 13:02:09 浏览: 174
STM32H743和FPGA通信的实现可以通过各种方式来实现,这里介绍一种常见的方法。
首先,我们可以使用STM32H743的GPIO引脚将其与FPGA的GPIO引脚连接起来。这些引脚可以通过FPGA的IO管脚映射到特定的数据和控制信号线上。然后,在STM32H743中编写相应的代码,配置这些GPIO引脚作为输入或输出,并控制它们的状态,以与FPGA进行通信。
其次,我们可以使用通用的串行通信接口(如SPI或I2C)来实现STM32H743和FPGA之间的通信。通过连接STM32H743的SPI或I2C接口到FPGA的相应引脚上,我们可以在STM32H743上配置和控制SPI或I2C总线,并与FPGA进行数据传输和通信。
另外,如果需要高速数据传输,我们还可以使用外部总线接口(如SDRAM、Ethernet等)来实现STM32H743和FPGA之间的通信。通过配置STM32H743的外部总线接口并连接到FPGA上,我们可以实现高速数据传输和通信。
总的来说,STM32H743和FPGA之间的通信可以通过GPIO引脚、串行通信接口或外部总线接口来实现。具体选择哪种方法取决于通信的需求和硬件的支持。在实际的应用中,我们需要根据具体的场景和需求来选择最合适的通信方式。
相关问题
STM32通过FSMC与FPGA通信 代码
以下是STM32通过FSMC与FPGA进行通信的示例代码:
首先,需要在STM32的CubeMX中配置FSMC接口。具体配置方法如下:
1. 打开CubeMX,选择STM32芯片型号和对应的工程。
2. 在"Pinout"选项卡中,将FSMC的引脚与FPGA的引脚连接。
3. 在"Configuration"选项卡中,选择"FSMC"接口,并进行相应的配置,如时序、读写模式等。配置完成后,生成代码。
接下来,可以参考以下示例代码进行通信:
```
#include "stm32f4xx.h"
#include "stm32f4xx_hal.h"
#define FPGA_BASE_ADDRESS 0x60000000 // FPGA的基地址
void FSMC_Init(void)
{
FSMC_NORSRAM_TimingTypeDef Timing;
FSMC_NORSRAM_InitTypeDef Init;
// 使能FSMC时钟
__HAL_RCC_FSMC_CLK_ENABLE();
// 配置FSMC时序
Timing.AddressSetupTime = 0x02;
Timing.AddressHoldTime = 0x00;
Timing.DataSetupTime = 0x05;
Timing.BusTurnAroundDuration = 0x00;
Timing.CLKDivision = 0x00;
Timing.DataLatency = 0x00;
Timing.AccessMode = FSMC_ACCESS_MODE_A;
// 配置FSMC NOR/SRAM Bank1
Init.NSBank = FSMC_NORSRAM_BANK1;
Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE;
Init.MemoryType = FSMC_MEMORY_TYPE_SRAM;
Init.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_16;
Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE;
Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW;
Init.WrapMode = FSMC_WRAP_MODE_DISABLE;
Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS;
Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE;
Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE;
Init.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE;
Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE;
Init.WriteBurst = FSMC_WRITE_BURST_DISABLE;
Init.PageSize = FSMC_PAGE_SIZE_NONE;
// 初始化FSMC
HAL_FSMC_Init(&Init);
HAL_FSMC_ConfigNORFlashTiming(&Timing, FSMC_NORSRAM_BANK1, FSMC_NORSRAM_TIMING_READ_WRITE_ENABLE);
// 使能FSMC Bank1
__HAL_RCC_FSMC_FORCE_RESET();
__HAL_RCC_FSMC_RELEASE_RESET();
}
void FSMC_WriteData(uint16_t data)
{
*(volatile uint16_t *)(FPGA_BASE_ADDRESS) = data;
}
uint16_t FSMC_ReadData(void)
{
return *(volatile uint16_t *)(FPGA_BASE_ADDRESS);
}
int main(void)
{
FSMC_Init();
while (1)
{
// 向FPGA写入数据
FSMC_WriteData(0x1234);
// 从FPGA读取数据
uint16_t data = FSMC_ReadData();
}
}
```
在上述示例代码中,首先需要初始化FSMC接口。然后,可以使用`FSMC_WriteData`函数向FPGA写入数据,使用`FSMC_ReadData`函数从FPGA读取数据。在这里,我们假设FPGA的基地址是`0x60000000`,因此可以使用指针来进行读写操作。注意,在读取数据时需要使用`volatile`关键字,以确保编译器不会对指针进行优化。
fpga和stm32通信代码
FPGA和STM32可以通过多种接口进行通信,例如SPI、I2C、UART等。下面以SPI接口为例,介绍如何在STM32和FPGA之间进行通信。
在STM32上,需要通过HAL库和SPI驱动程序进行配置和使用SPI接口。以下是一个简单的STM32和FPGA之间SPI通信的代码示例:
```c
#include "stm32f4xx_hal.h"
SPI_HandleTypeDef hspi1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_SPI1_Init();
while (1)
{
uint8_t tx_data = 0x55;
uint8_t rx_data;
HAL_SPI_TransmitReceive(&hspi1, &tx_data, &rx_data, 1, 100);
// 发送一个字节的数据并接收一个字节的数据
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_SPI1_Init(void)
{
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER; // 主设备
hspi1.Init.Direction = SPI_DIRECTION_2LINES; // 双向传输
hspi1.Init.DataSize = SPI_DATASIZE_8BIT; // 数据位宽为8位
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; // 时钟极性为低
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; // 时钟相位为第一边沿
hspi1.Init.NSS = SPI_NSS_SOFT; // 软件片选
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; // 时钟分频系数为256
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; // MSB优先
hspi1.Init.TIMode = SPI_TIMODE_DISABLE; // 不使用 TI 模式
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; // 不使用 CRC 校验
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; // 片选引脚作为输出
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
}
```
在FPGA上,需要根据所使用的开发板和FPGA型号,进行相应的配置和编程。以下是一个简单的FPGA SPI接口的代码示例:
```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity spi_interface is
port (
clk : in std_logic;
reset : in std_logic;
mosi : in std_logic;
miso : out std_logic;
cs : out std_logic
);
end spi_interface;
architecture Behavioral of spi_interface is
signal sclk : std_logic;
signal ssel : std_logic;
signal tx_data : std_logic_vector(7 downto 0);
signal rx_data : std_logic_vector(7 downto 0);
signal data_valid : std_logic := '0';
begin
process(clk, reset)
begin
if reset = '1' then
sclk <= '0';
ssel <= '1';
elsif rising_edge(clk) then
if ssel = '0' then
if tx_data'length > 0 then
mosi <= tx_data(0);
tx_data <= tx_data(1 to tx_data'high);
sclk <= not sclk;
else
tx_data <= (others => '0');
rx_data <= (others => '0');
data_valid <= '0';
ssel <= '1';
end if;
else
mosi <= 'Z';
data_valid <= '0';
sclk <= '0';
if cs = '0' then
ssel <= '0';
rx_data <= (others => 'Z');
end if;
end if;
end if;
end process;
miso <= rx_data(0);
process(clk)
begin
if rising_edge(clk) then
if cs = '0' and ssel = '0' then
rx_data <= miso & rx_data(7 downto 1);
if sclk = '1' then
data_valid <= '1';
end if;
end if;
end if;
end process;
end Behavioral;
```
以上是一个简单的FPGA SPI接口的代码示例,需要根据实际情况进行修改和调试。在使用FPGA通信时,需要注意时序和信号电平的匹配,以确保通信正常。
阅读全文