人工峰群算法 python
时间: 2023-11-10 14:04:50 浏览: 55
人工峰群算法(Artificial Bee Colony Algorithm,ABC算法)是一种基于蜜蜂觅食行为的优化算法,常用于解决函数优化问题。以下是使用Python实现ABC算法的示例代码:
```python
import numpy as np
# 目标函数
def func(x):
return x**2
# ABC算法
def abc_algorithm(func, dim, limit=100, colony_size=30, max_trials=100):
# 初始化蜜蜂群
colony = np.random.uniform(-limit, limit, (colony_size, dim))
# 计算每个蜜蜂的适应度
fitness = np.array([func(x) for x in colony])
# 记录最优解和最优适应度
best_solution = colony[np.argmin(fitness)]
best_fitness = np.min(fitness)
# 迭代搜索
for i in range(max_trials):
# 雇佣蜜蜂阶段
for j in range(colony_size):
# 随机选择一个不等于j的蜜蜂k
k = np.random.choice([x for x in range(colony_size) if x != j])
# 随机选择一个维度d
d = np.random.randint(dim)
# 生成新解
new_solution = colony[j].copy()
new_solution[d] = colony[j][d] + np.random.uniform(-1, 1) * (colony[j][d] - colony[k][d])
# 计算新解的适应度
new_fitness = func(new_solution)
# 判断是否更新最优解和最优适应度
if new_fitness < fitness[j]:
colony[j] = new_solution
fitness[j] = new_fitness
if new_fitness < best_fitness:
best_solution = new_solution
best_fitness = new_fitness
# 观察蜜蜂阶段
for j in range(colony_size):
# 随机选择一个维度d
d = np.random.randint(dim)
# 生成新解
new_solution = colony[j].copy()
new_solution[d] = np.random.uniform(-limit, limit)
# 计算新解的适应度
new_fitness = func(new_solution)
# 判断是否更新最优解和最优适应度
if new_fitness < fitness[j]:
colony[j] = new_solution
fitness[j] = new_fitness
if new_fitness < best_fitness:
best_solution = new_solution
best_fitness = new_fitness
# 跟随蜜蜂阶段
for j in range(colony_size):
# 随机选择一个不等于j的蜜蜂k
k = np.random.choice([x for x in range(colony_size) if x != j])
# 随机选择一个维度d
d = np.random.randint(dim)
# 生成新解
new_solution = colony[j].copy()
new_solution[d] = colony[j][d] + np.random.uniform(-1, 1) * (best_solution[d] - colony[j][d]) + np.random.uniform(-1, 1) * (colony[j][d] - colony[k][d])
# 计算新解的适应度
new_fitness = func(new_solution)
# 判断是否更新最优解和最优适应度
if new_fitness < fitness[j]:
colony[j] = new_solution
fitness[j] = new_fitness
if new_fitness < best_fitness:
best_solution = new_solution
best_fitness = new_fitness
return best_solution, best_fitness
# 示例:求解函数f(x)=x^2的最小值
best_solution, best_fitness = abc_algorithm(func, dim=1, limit=10)
print("最优解:", best_solution)
print("最优适应度:", best_fitness)
```
阅读全文