pytorch训练mobilenetv1完整程序
时间: 2024-11-03 20:16:30 浏览: 3
PyTorch 中训练 MobileNetV1 的完整程序通常包括以下几个步骤:
1. **导入必要的库**:
```python
import torch
from torchvision import models, transforms, datasets
import torch.optim as optim
from torch.utils.data import DataLoader
```
2. **下载预训练模型并加载**:
```python
model = models.mobilenet_v2(pretrained=True)
num_features = model.fc.in_features # 获取最后一层(全连接层)的输入特征数
```
3. **冻结前几层**(如果不需要微调所有层):
```python
for param in model.parameters():
param.requires_grad = False
model.fc = torch.nn.Linear(num_features, num_classes) # 定义新的分类层
```
4. **设置损失函数和优化器**:
```python
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
```
5. **数据处理**:
```python
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageFolder(train_dir, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_dataset = datasets.ImageFolder(val_dir, transform=transform)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
```
6. **训练循环**:
```python
num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for epoch in range(num_epochs):
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 计算验证集精度
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
val_accuracy = 100 * correct / total
print(f'Epoch {epoch+1}/{num_epochs}, Validation Accuracy: {val_accuracy}%')
```
7. **保存模型**:
```python
torch.save(model.state_dict(), 'mobile_net.pth')
```
在这个例子中,`train_dir` 和 `val_dir` 分别指定了训练集和验证集的目录,`batch_size` 是每次迭代使用的样本数量,`num_classes` 是分类任务的类别数。
阅读全文