python informer
时间: 2023-08-13 21:00:26 浏览: 445
Python Informer是一个Python库,用于实现信息的自动化收集、处理和转发。它可以帮助用户快速获取和整理各种信息,并提供灵活的方式将信息传递给用户。Python Informer提供了丰富的功能,包括网页数据提取、API调用、文件处理等,以满足用户对不同信息源的需求。
使用Python Informer,用户可以通过指定的规则从网页中提取所需的数据,如文字、链接、图片、表格等。这个功能特别适用于需要从网页中提取大量信息的场景,比如爬虫任务、新闻资讯等。Python Informer还可以进行API调用,用户可以通过简单的配置信息和参数,快速实现数据的采集和整合。这对于需要获取实时数据或者从不同的API中汇总数据的用户非常有用。
另外,Python Informer还提供了多种文件处理功能,包括文件的读取、写入、格式转换等。用户可以使用Python Informer来处理各种不同类型的文件,如文本文件、CSV文件、Excel文件等。同时,Python Informer还支持文件的解析和提取,用户可以根据需要从文件中获取所需的信息。
总的来说,Python Informer是一个功能强大的工具,可以帮助用户实现各种信息的自动化收集和处理。它的灵活性和易用性使得用户能够快速应对不同的信息需求,并将信息按照自己的需要传递给其他系统或用户。无论是对于开发者还是普通用户,Python Informer都是一个非常有价值的工具。
相关问题
informer代码python
### Informer Python Code Example
Informer是一种用于处理长时间序列数据的深度学习模型,特别适用于具有长依赖关系的时间序列预测任务。下面是一个基于PyTorch框架实现Informer模型的基础代码示例:
```python
import torch
from torch import nn
class AttentionLayer(nn.Module):
"""Attention机制层"""
def __init__(self, attention_hidden_dim=64):
super().__init__()
self.query_linear = nn.Linear(attention_hidden_dim, attention_hidden_dim)
self.key_linear = nn.Linear(attention_hidden_dim, attention_hidden_dim)
self.value_linear = nn.Linear(attention_hidden_dim, attention_hidden_dim)
def forward(self, queries, keys, values):
Q = self.query_linear(queries)
K = self.key_linear(keys)
V = self.value_linear(values)
scores = torch.matmul(Q, K.transpose(-2, -1)) / (K.size(-1) ** 0.5)
attn_weights = torch.softmax(scores, dim=-1)
context_vector = torch.matmul(attn_weights, V)
return context_vector
class EncoderLayer(nn.Module):
"""编码器单层结构"""
def __init__(self, d_model=512, n_heads=8, d_ff=2048, dropout=0.1):
super().__init__()
self.self_attn = AttentionLayer(d_model)
self.feed_forward = nn.Sequential(
nn.Linear(d_model, d_ff),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(d_ff, d_model)
)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, src):
src2 = self.self_attn(src, src, src)
src = src + self.dropout(src2)
src = self.norm1(src)
src2 = self.feed_forward(src)
src = src + self.dropout(src2)
src = self.norm2(src)
return src
class DecoderLayer(nn.Module):
"""解码器单层结构"""
def __init__(self, d_model=512, n_heads=8, d_ff=2048, dropout=0.1):
super().__init__()
self.self_attn = AttentionLayer(d_model)
self.multihead_attn = AttentionLayer(d_model)
self.feed_forward = nn.Sequential(
nn.Linear(d_model, d_ff),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(d_ff, d_model)
)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, tgt, memory):
tgt2 = self.self_attn(tgt, tgt, tgt)
tgt = tgt + self.dropout(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(tgt, memory, memory)
tgt = tgt + self.dropout(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.feed_forward(tgt)
tgt = tgt + self.dropout(tgt2)
tgt = self.norm3(tgt)
return tgt
class Informer(nn.Module):
"""完整的Informer网络架构定义"""
def __init__(self,
enc_in=7, dec_in=7, c_out=7,
seq_len=96, label_len=48, out_len=24,
factor=5, d_model=512, n_heads=8, e_layers=3, d_layers=2,
d_ff=2048, dropout=0.0, activation='gelu'):
super(Informer, self).__init__()
# 编码部分
self.enc_embedding = DataEmbedding(enc_in, d_model, dropout)
self.encoder = Encoder([
EncoderLayer(
AttentionLayer(True, factor, attention_dropout=dropout),
d_model, d_ff, dropout=dropout
) for _ in range(e_layers)])
# 解码部分
self.dec_embedding = DataEmbedding(dec_in, d_model, dropout)
self.decoder = Decoder([
DecoderLayer(
AttentionLayer(False, factor, attention_dropout=dropout),
AttentionLayer(False, factor, attention_dropout=dropout),
d_model, d_ff, dropout=dropout
) for _ in range(d_layers)])
self.projection = nn.Linear(d_model, c_out, bias=True)
def main():
model = Informer()
print(model)
if __name__ == '__main__':
main()
```
此段代码展示了如何构建一个简单的Informer模型[^4]。
利用随机数据生成完整的基于python的Informer时序预测模型代码
在Python中,我们可以使用`PyTorch`库结合`TIMM`(Transformers in PyTorch)来构建基于注意力机制的时间序列预测模型如Informer。请注意,以下代码示例将假设你已经安装了必要的库,如果没有,你可以通过`pip install torch timm`进行安装。
```python
import torch
from torch import nn
import torch.nn.functional as F
from timm.models.layers import DropPath
from einops import rearrange
class MHA(nn.Module):
def __init__(self, d_model, n_heads, dropout=0.1):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.head_dim = d_model // n_heads
self.fc_q = nn.Linear(d_model, d_model)
self.fc_k = nn.Linear(d_model, d_model)
self.fc_v = nn.Linear(d_model, d_model)
self.attn_dropout = nn.Dropout(dropout)
self.proj = nn.Linear(d_model, d_model)
def forward(self, x):
b, seq_len, _ = x.shape
q = self.fc_q(x).view(b, seq_len, self.n_heads, self.head_dim)
k = self.fc_k(x).view(b, seq_len, self.n_heads, self.head_dim)
v = self.fc_v(x).view(b, seq_len, self.n_heads, self.head_dim)
q = rearrange(q, 'b t (h d) -> b h t d', h=self.n_heads)
k = rearrange(k, 'b t (h d) -> b h t d', h=self.n_heads)
v = rearrange(v, 'b t (h d) -> b h t d', h=self.n_heads)
attn_weights = torch.matmul(q, k.transpose(-1, -2)) / (self.head_dim ** 0.5)
attn_weights = F.softmax(attn_weights, dim=-1)
attn_weights = self.attn_dropout(attn_weights)
out = torch.matmul(attn_weights, v)
out = rearrange(out, 'b h t d -> b t (h d)')
out = self.proj(out)
return out
class InformerBlock(nn.Module):
def __init__(self, d_model, n_heads, dropout=0.1):
super().__init__()
self.mha = MHA(d_model, n_heads, dropout)
self.ln_1 = nn.LayerNorm(d_model)
self.ffn = nn.Sequential(
nn.Linear(d_model, d_model * 4),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(d_model * 4, d_model),
)
self.ln_2 = nn.LayerNorm(d_model)
def forward(self, x):
residual = x
x = self.ln_1(x)
x = x + self.mha(x)
x = self.ln_2(x)
x = x + self.ffn(residual)
return x
class Informer(nn.Module):
def __init__(self, input_size, output_size, num_layers, d_model, n_heads, dropout=0.1):
super().__init__()
self.encoder = nn.ModuleList([
InformerBlock(d_model, n_heads, dropout)
for _ in range(num_layers)
])
self.decoder = nn.Linear(d_model, output_size)
self.dropout = nn.Dropout(dropout)
self.linear_transpose = nn.Linear(output_size, input_size)
def forward(self, x, past_seq=None):
if past_seq is not None:
# For autoregressive prediction with a given context
x, past_seq = x[:, :-1], past_seq
for block in self.encoder:
x = block(x)
encoded_x = self.dropout(x)
decoded_x = self.decoder(encoded_x.mean(dim=1)) # Assuming average pooling over sequence
predicted_seq = self.linear_transpose(decoded_x)
return predicted_seq, encoded_x
# 使用示例
input_size = ... # 输入时间步数特征维度
output_size = ... # 预测时间步数特征维度
num_layers = ...
d_model = ...
n_heads = ...
model = Informer(input_size, output_size, num_layers, d_model, n_heads)
past_seq = None # 如果你想进行自回归预测,可以提供一个过去序列
x = torch.randn(1, input_size, requires_grad=True)
predicted_seq, encoded_x = model(x, past_seq)
```
阅读全文
相关推荐













