Python 数据预处理
时间: 2023-11-05 19:50:12 浏览: 156
python新手数据预处理案例练习
Python的数据预处理是指在进行数据分析或机器学习任务之前,对原始数据进行清洗、转换和整理,以便于后续的数据分析和建模过程。下面是一些常见的Python数据预处理技术:
1. 数据清洗:包括处理缺失值、异常值、重复值等。可以使用pandas库中的函数和方法进行数据清洗操作。
2. 特征选择:选择对目标变量有显著影响的特征,可以使用统计方法(如相关性分析、方差分析等)或基于机器学习的方法(如递归特征消除、L1正则化等)进行特征选择。
3. 特征缩放:将不同范围的特征值缩放到相同的尺度上,常见的方法有标准化(即Z-score标准化)和归一化(即将特征值缩放到0到1之间)。
4. 特征编码:将非数值型特征转换为数值型特征,常见的方法有独热编码(One-hot Encoding)和标签编码(Label Encoding)。
5. 特征构造:通过对原始特征进行组合、转换或生成新的特征,提取更多有用的信息。可以使用pandas库中的函数和方法进行特征构造。
6. 数据集划分:将原始数据集划分为训练集和测试集,用于模型的训练和评估。可以使用scikit-learn库中的函数进行数据集划分。
以上只是一些常见的Python数据预处理技术,根据具体的任务和数据情况,还可以使用其他方法进行数据预处理。
阅读全文