用Python实现,以乳腺癌数据集为例,分别用方差阈值法、t检验法,进行特征选择。找出选出的公共特征 并记录结果。 。
时间: 2024-10-06 07:00:44 浏览: 63
在Python中,我们可以使用scikit-learn库来处理乳腺癌数据集,并通过sklearn.feature_selection模块中的VarianceThreshold和SelectKBest函数来实现特征选择。以下是使用方差阈值法(VarianceThreshold)和t检验法(f_classif)的基本步骤:
首先,我们需要导入所需的库:
```python
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.feature_selection import VarianceThreshold, f_classif
from sklearn.model_selection import train_test_split
```
1. 加载数据集:
```python
cancer = load_breast_cancer()
X = cancer.data
y = cancer.target
```
2. 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. 方差阈值法(仅保留方差大于某个阈值的特征):
```python
vt = VarianceThreshold(threshold=(.8 * (X_train.std() ** 2)).mean())
vt.fit(X_train) # 只考虑训练集
selected_features_vt = vt.get_support(indices=True)
X_train_vt = vt.transform(X_train)
X_test_vt = vt.transform(X_test)
```
4. t检验法(计算每个特征与目标变量之间的关联度,选取得分高的k个特征):
```python
selector_ttest = SelectKBest(f_classif, k='all') # 或者指定k值
selector_ttest.fit(X_train, y_train)
scores_ttest = selector_ttest.scores_
selected_features_ttest = scores_ttest.argsort()[:-50:-1] # 选择前50个最高得分特征
X_train_ttest = X_train[:, selected_features_ttest]
X_test_ttest = X_test[:, selected_features_ttest]
```
5. 找出两个方法的公共特征:
```python
common_features = set(selected_features_vt).intersection(set(selected_features_ttest))
```
最后,记录结果可以创建一个字典或DataFrame,包含选定的特征及其方法:
```python
results = {
"VarThreshold Features": list(selected_features_vt),
"TTest Features": list(selected_features_ttest),
"Common Features": common_features,
}
```
阅读全文