matlabBP神经网络预测代码
时间: 2023-09-16 10:11:52 浏览: 127
以下是一个简单的 MATLAB BP(Backpropagation)神经网络预测代码示例:
```matlab
% 数据准备
x = [0 1 2 3 4 5];
y = [0 0.8 0.9 0.1 -0.8 -1];
% 创建神经网络
net = feedforwardnet(10); % 创建一个有10个隐藏层神经元的前馈神经网络
net = configure(net, x, y); % 配置网络输入和输出的大小
% 设置训练参数
net.trainParam.epochs = 1000; % 训练的迭代次数
net.trainParam.lr = 0.01; % 学习率
% 训练网络
net = train(net, x, y);
% 使用网络进行预测
output = net(x);
% 绘制预测结果
plot(x, y, 'o', x, output, '-');
legend('真实值', '预测值');
```
在上述代码中,首先我们准备了输入数据 `x` 和目标输出数据 `y`。然后,我们通过 `feedforwardnet` 函数创建了一个有10个隐藏层神经元的前馈神经网络。接下来,我们使用 `configure` 函数配置了网络的输入和输出大小。然后,通过设置训练参数,如迭代次数和学习率,来训练网络。最后,我们使用训练好的网络进行预测,并将结果绘制出来。
请注意,这只是一个简单的示例代码,实际应用中可能需要根据具体情况进行调整和优化。
阅读全文
相关推荐
















