考虑如下满足假设 4.1-4.4 的回归模型: Y = β0 + β1X1 + β2X2 + β3X3 + ε, 其中,β3 的真实值为 0,我们称 X3 为无关变量(irrelevant variable)。然而,研究 95 4.10 本章小结 者并不知道 β3 = 0 并使用 OLS 估计得到如下样本回归函数: Yˆ = βˆ0 + βˆ1X1 + βˆ2X2 + βˆ3X3. 请分析加入无关变量 X3 是否影响 βˆ1 和 βˆ2 的无偏性?是否影响 βˆ1 和 βˆ2 的方差?
时间: 2023-06-09 22:02:34 浏览: 162
根据OLS估计的偏差项(residuals),我们可以得到:
Yˆ = β0 β1X1 β2X2 β3X3 + e
其中 e 是误差项,表示模型无法解释的部分。
考虑β3的真实值为0,即X3是一个无关变量。在这种情况下,由于OLS估计是无偏的,因此βˆ1和βˆ2的估计值不会受到X3的影响,也就是说,加入无关变量X3不会对βˆ1和βˆ2的无偏性有影响。
然而,加入无关变量X3会对βˆ1和βˆ2的方差产生影响。在没有X3的情况下,模型只需要估计3个参数,而当加入X3时,模型需要估计4个参数。这意味着模型的自由度减少了,使得误差项的方差增加。由此可以得出,加入无关变量X3会使得βˆ1和βˆ2的方差增加,从而影响到它们的精确性。
阅读全文