用c语言写卡尔曼滤波GPS与IMU融合导航的代码
时间: 2024-02-12 17:08:24 浏览: 180
以下是一个简单的C语言程序,演示了如何使用卡尔曼滤波对GPS和IMU的测量结果进行融合,实现导航定位:
```c
#include <stdio.h>
#include <math.h>
#define N 4 // 状态向量的维度
#define M 2 // 测量向量的维度
void matrix_multiply(float a[N][N], float b[N][N], float c[N][N]) {
int i, j, k;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
c[i][j] = 0;
for (k = 0; k < N; k++) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
}
void matrix_add(float a[N][N], float b[N][N], float c[N][N]) {
int i, j;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
c[i][j] = a[i][j] + b[i][j];
}
}
}
void matrix_subtract(float a[N][N], float b[N][N], float c[N][N]) {
int i, j;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
c[i][j] = a[i][j] - b[i][j];
}
}
}
void matrix_transpose(float a[N][N], float b[N][N]) {
int i, j;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
b[j][i] = a[i][j];
}
}
}
void matrix_inverse(float a[N][N], float b[N][N]) {
int i, j, k;
float t;
float c[N][N];
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
c[i][j] = a[i][j];
b[i][j] = (i == j) ? 1 : 0;
}
}
for (k = 0; k < N; k++) {
t = c[k][k];
for (j = 0; j < N; j++) {
c[k][j] /= t;
b[k][j] /= t;
}
for (i = k + 1; i < N; i++) {
t = c[i][k];
for (j = 0; j < N; j++) {
c[i][j] -= t * c[k][j];
b[i][j] -= t * b[k][j];
}
}
}
for (k = N - 1; k > 0; k--) {
for (i = k - 1; i >= 0; i--) {
t = c[i][k];
for (j = 0; j < N; j++) {
c[i][j] -= t * c[k][j];
b[i][j] -= t * b[k][j];
}
}
}
}
void kalman_filter(float x[N], float P[N][N], float z[M], float R[M][M], float Q[N][N], float A[N][N], float H[M][N]) {
float xp[N], Pp[N][N], K[N][M], y[M], S[M][M], S_inv[M][M];
matrix_multiply(A, x, xp);
matrix_multiply(A, P, Pp);
matrix_multiply(Pp, A, Pp);
matrix_add(Pp, Q, Pp);
matrix_multiply(H, Pp, S);
matrix_multiply(S, H, S);
matrix_add(S, R, S);
matrix_inverse(S, S_inv);
matrix_multiply(Pp, H, K);
matrix_multiply(K, S_inv, K);
matrix_subtract(z, xp, y);
matrix_multiply(K, y, x);
matrix_multiply(K, H, K);
matrix_subtract(Pp, K, P);
}
int main() {
// 初始化状态向量和协方差矩阵
float x[N] = {0, 0, 0, 0};
float P[N][N] = {{100, 0, 0, 0},
{0, 100, 0, 0},
{0, 0, 100, 0},
{0, 0, 0, 100}};
// 初始化测量向量和协方差矩阵
float z[M] = {0, 0};
float R[M][M] = {{0.1, 0},
{0, 0.1}};
// 初始化过程噪声协方差矩阵和状态转移矩阵
float Q[N][N] = {{0.01, 0, 0, 0},
{0, 0.01, 0, 0},
{0, 0, 0.01, 0},
{0, 0, 0, 0.01}};
float dt = 0.01;
float A[N][N] = {{1, 0, dt, 0},
{0, 1, 0, dt},
{0, 0, 1, 0},
{0, 0, 0, 1}};
// 初始化测量矩阵
float H[M][N] = {{1, 0, 0, 0},
{0, 1, 0, 0}};
// 读取GPS和IMU的测量结果,并进行融合
float gps_x, gps_y;
float imu_ax, imu_ay;
while (1) {
// 读取GPS和IMU的测量结果
// ...
// 更新状态向量和协方差矩阵
z[0] = gps_x;
z[1] = gps_y;
float imu_noise = 0.1;
float Q_imu[N][N] = {{imu_noise, 0, 0, 0},
{0, imu_noise, 0, 0},
{0, 0, imu_noise, 0},
{0, 0, 0, imu_noise}};
float A_imu[N][N] = {{1, 0, dt, 0},
{0, 1, 0, dt},
{0, 0, 1 - imu_noise, 0},
{0, 0, 0, 1 - imu_noise}};
kalman_filter(x, P, z, R, Q, A, H);
kalman_filter(x, P, imu_ax, Q_imu, A_imu, H);
}
return 0;
}
```
以上是一个简单的卡尔曼滤波的实现,具体的实现需要根据实际情况进行调整和优化。
阅读全文