list1=[1,3,5,7],list1为excel中行的索引,Excel表格有100行,将索引中的行保存到新的工作表中。
时间: 2023-06-17 13:07:54 浏览: 134
你可以使用Python中的pandas库来完成这个任务。以下是一个示例代码:
```python
import pandas as pd
# 读取Excel文件
df = pd.read_excel('your_file.xlsx')
# 要保存的行的索引
index_to_save = [1, 3, 5, 7]
# 选择要保存的行
df_to_save = df.iloc[index_to_save]
# 新建一个Excel文件并写入数据
with pd.ExcelWriter('new_file.xlsx') as writer:
df_to_save.to_excel(writer, index=False)
```
这个示例代码假设你的Excel文件名为`your_file.xlsx`,其中包含100行数据。`index_to_save`变量是一个包含要保存的行的索引的列表。代码通过`iloc`方法选择要保存的行,并将这些行保存到名为`df_to_save`的新数据框中。最后,使用`ExcelWriter`将`df_to_save`写入一个新的Excel文件`new_file.xlsx`中。
相关问题
帮我优化这段代码:def readCSVFile(demand_file,depot_file,model): with open(demand_file,'r') as f: demand_reader=csv.demand_reader 中行的 DictReader(f):需求 = 需求() demand.id = int(row['id']) demand.x_coord = float(row['x_coord']) demand.y_coord = float(row['y_coord']) demand.demand = float(row['demand']) demand.start_time=float(row['start_time']) demand.end_time=float(row['end_time']) demand.service_time=float(row['service_time']) model.demand_dict[demand.id] = 需求 model.demand_id_list.append(demand.id) model.number_of_demands=len(model.demand_id_list) with open(depot_file, 'r') 作为 f: depot_reader = csv。depot_reader 中行的字典阅读器(f):车辆 = 车辆() vehicle.depot_id = 行['depot_id'] vehicle.x_coord = float(row['x_coord']) vehicle.y_coord = float(row['y_coord']) vehicle.type = row['vehicle_type'] vehicle.capacity=float(row['vehicle_capacity']) vehicle.free_speed=float(row['vehicle_speed']) vehicle.numbers=float(row['number_of_vehicle']) vehicle.fixed_cost=float(row['fixed_cost']) vehicle.variable_cost=float(row['variable_cost']) vehicle.start_time=float(row['start_time']) vehicle.end_time=float(row['end_time']) model.vehicle_dict[vehicle.type] = Vehicle model.vehicle_type_list.append(vehicle.type)
可以考虑使用 Pandas 库来读取 CSV 文件,这样可以更加高效地读取和处理数据。下面是使用 Pandas 的示例代码:
```python
import pandas as pd
def readCSVFile(demand_file, depot_file, model):
demand_df = pd.read_csv(demand_file)
demand_df['id'] = demand_df['id'].astype(int)
demand_df['x_coord'] = demand_df['x_coord'].astype(float)
demand_df['y_coord'] = demand_df['y_coord'].astype(float)
demand_df['demand'] = demand_df['demand'].astype(float)
demand_df['start_time'] = demand_df['start_time'].astype(float)
demand_df['end_time'] = demand_df['end_time'].astype(float)
demand_df['service_time'] = demand_df['service_time'].astype(float)
model.demand_dict = demand_df.set_index('id').to_dict('index')
model.demand_id_list = demand_df['id'].tolist()
model.number_of_demands = len(model.demand_id_list)
depot_df = pd.read_csv(depot_file)
depot_df['x_coord'] = depot_df['x_coord'].astype(float)
depot_df['y_coord'] = depot_df['y_coord'].astype(float)
depot_df['capacity'] = depot_df['vehicle_capacity'].astype(float)
depot_df['free_speed'] = depot_df['vehicle_speed'].astype(float)
depot_df['numbers'] = depot_df['number_of_vehicle'].astype(float)
depot_df['fixed_cost'] = depot_df['fixed_cost'].astype(float)
depot_df['variable_cost'] = depot_df['variable_cost'].astype(float)
depot_df['start_time'] = depot_df['start_time'].astype(float)
depot_df['end_time'] = depot_df['end_time'].astype(float)
model.vehicle_dict = depot_df.set_index('vehicle_type').to_dict('index')
model.vehicle_type_list = depot_df['vehicle_type'].tolist()
```
这里使用了 Pandas 的 `read_csv` 方法来读取 CSV 文件,并且对列进行了类型转换。读取的数据可以通过 `set_index` 方法设置索引,然后转换为字典。最后将需要的数据存储到 `model` 对象中。
listcontrol删除一行
要删除 List Control 中的一行,可以使用以下步骤:
1. 获取所选行的索引:
```cpp
int nIndex = pListCtrl->GetNextItem(-1, LVNI_SELECTED);
```
2. 删除该行:
```cpp
pListCtrl->DeleteItem(nIndex);
```
这里,`pListCtrl` 是指向 List Control 的指针。
完整的代码示例:
```cpp
// 获取 List Control 中选中行的索引
int nIndex = pListCtrl->GetNextItem(-1, LVNI_SELECTED);
// 如果有选中的行
if (nIndex != -1)
{
// 删除该行
pListCtrl->DeleteItem(nIndex);
}
```
阅读全文