讲解一下普通卷积与深度可分离卷积的不同
时间: 2023-06-16 15:03:25 浏览: 915
具有深度可分离卷积的多尺度学习网络
普通卷积和深度可分离卷积都是卷积神经网络中常用的卷积操作,它们的主要区别在于卷积核的结构和卷积的计算方式。
普通卷积是使用一个固定大小的卷积核,在输入特征图的每个位置进行卷积计算。这种卷积操作的参数量较大,因为每个卷积核都需要学习多个权重值,且不同的卷积核之间没有共享权重。普通卷积的优点在于较强的表达能力和精度,但是参数量大,计算复杂度高,容易导致过拟合。
深度可分离卷积则分成了两个部分:深度卷积和逐点卷积。深度卷积是将输入特征图的每个通道单独进行卷积操作,即每个通道都有一个对应的卷积核,这样可以减少卷积核的参数量。逐点卷积是使用 $1\times 1$ 的卷积核进行卷积计算,主要是用来将不同通道的特征进行组合。这种卷积操作的参数量较小,因为每个通道都共享一个卷积核,且卷积核的大小较小。深度可分离卷积的优点在于参数量小,计算速度快,模型轻量化,但是表达能力和精度相对普通卷积较弱。
总之,深度可分离卷积适合于轻量化和移动端等计算资源有限的场景,而普通卷积适合于精度要求较高的场景。
阅读全文