conformer代码实现pytorch
时间: 2023-07-07 12:03:58 浏览: 269
以下是在PyTorch中实现Conformer模型的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvBlock, self).__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding=(kernel_size - 1) // 2)
self.bn = nn.BatchNorm1d(out_channels)
self.activation = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.activation(x)
return x
class DepthWiseConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(DepthWiseConvBlock, self).__init__()
self.depthwise_conv = nn.Conv1d(in_channels, in_channels, kernel_size, stride, padding=(kernel_size - 1) // 2, groups=in_channels)
self.pointwise_conv = nn.Conv1d(in_channels, out_channels, 1, 1)
self.bn = nn.BatchNorm1d(out_channels)
self.activation = nn.ReLU()
def forward(self, x):
x = self.depthwise_conv(x)
x = self.pointwise_conv(x)
x = self.bn(x)
x = self.activation(x)
return x
class MultiHeadedSelfAttention(nn.Module):
def __init__(self, num_heads, model_dim, dropout_rate=0.1):
super(MultiHeadedSelfAttention, self).__init__()
self.num_heads = num_heads
self.model_dim = model_dim
self.dropout_rate = dropout_rate
self.head_dim = model_dim // num_heads
self.query_projection = nn.Linear(model_dim, model_dim)
self.key_projection = nn.Linear(model_dim, model_dim)
self.value_projection = nn.Linear(model_dim, model_dim)
self.dropout = nn.Dropout(dropout_rate)
self.output_projection = nn.Linear(model_dim, model_dim)
def forward(self, x):
batch_size, seq_len, model_dim = x.size()
query = self.query_projection(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
key = self.key_projection(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
value = self.value_projection(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
attention_scores = torch.matmul(query, key.transpose(-2, -1))
attention_scores = attention_scores / self.head_dim ** 0.5
attention_probs = F.softmax(attention_scores, dim=-1)
context_vectors = torch.matmul(self.dropout(attention_probs), value).transpose(1, 2).contiguous().view(batch_size, seq_len, model_dim)
output = self.output_projection(context_vectors)
return output
class ConformerBlock(nn.Module):
def __init__(self, model_dim, num_heads, feedforward_dim, dropout_rate=0.1):
super(ConformerBlock, self).__init__()
self.model_dim = model_dim
self.num_heads = num_heads
self.feedforward_dim = feedforward_dim
self.dropout_rate = dropout_rate
self.layer_norm_1 = nn.LayerNorm(model_dim)
self.attention = MultiHeadedSelfAttention(num_heads=num_heads, model_dim=model_dim, dropout_rate=dropout_rate)
self.dropout_1 = nn.Dropout(dropout_rate)
self.layer_norm_2 = nn.LayerNorm(model_dim)
self.convolution_1 = ConvBlock(in_channels=model_dim, out_channels=feedforward_dim, kernel_size=1, stride=1)
self.convolution_2 = DepthWiseConvBlock(in_channels=feedforward_dim, out_channels=model_dim, kernel_size=3, stride=1)
self.dropout_2 = nn.Dropout(dropout_rate)
def forward(self, x):
residual = x
x = self.layer_norm_1(x)
x = x + self.dropout_1(self.attention(x))
x = self.layer_norm_2(x)
x = x + self.dropout_2(self.convolution_2(self.convolution_1(x)))
return x + residual
class Conformer(nn.Module):
def __init__(self, num_layers, model_dim, num_heads, feedforward_dim, num_classes, dropout_rate=0.1):
super(Conformer, self).__init__()
self.num_layers = num_layers
self.model_dim = model_dim
self.num_heads = num_heads
self.feedforward_dim = feedforward_dim
self.num_classes = num_classes
self.dropout_rate = dropout_rate
self.convolution = ConvBlock(in_channels=1, out_channels=model_dim, kernel_size=3, stride=1)
self.blocks = nn.ModuleList([ConformerBlock(model_dim=model_dim, num_heads=num_heads, feedforward_dim=feedforward_dim, dropout_rate=dropout_rate) for _ in range(num_layers)])
self.layer_norm = nn.LayerNorm(model_dim)
self.fc = nn.Linear(model_dim, num_classes)
def forward(self, x):
x = self.convolution(x)
for block in self.blocks:
x = block(x)
x = self.layer_norm(x)
x = x.mean(dim=1)
x = self.fc(x)
return x
```
这段代码实现了一个包含多个Conformer block的Conformer模型,可以用于分类任务。在这个例子中,我们使用1D卷积来处理输入序列,然后通过多个Conformer block来提取特征并进行分类。在每个Conformer block中,我们使用self-attention和多层卷积操作来对输入序列进行处理。最后,我们使用全连接层将Conformer block的输出映射到分类结果。
阅读全文