STM32F103控制57步进电机加减速代码
时间: 2023-09-20 20:05:50 浏览: 60
### 回答1:
以下是一个STM32F103控制57步进电机加减速的代码示例:
```C
#include "stm32f10x.h"
#define DELAY_TIME 10
#define PULSE_PER_REV 200 // 步进电机每转的脉冲数
#define MAX_SPEED 1000 // 最大速度,单位是转每秒
#define ACCELERATION 100 // 加速度,单位是转每秒的平方
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
int steps = 0;
int direction = 1;
int speed = 0;
int target_speed = 0;
void delay(int ms) {
int i, j;
for (i = 0; i < ms; i++) {
for (j = 0; j < 1000; j++);
}
}
void TIM2_IRQHandler(void) {
if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) {
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
if (speed < target_speed) {
speed += ACCELERATION * DELAY_TIME / 1000;
} else if (speed > target_speed) {
speed -= ACCELERATION * DELAY_TIME / 1000;
}
steps += speed * DELAY_TIME / 1000;
if (steps >= PULSE_PER_REV) {
steps -= PULSE_PER_REV;
if (direction == 1) {
GPIO_SetBits(GPIOB, GPIO_Pin_1);
} else {
GPIO_SetBits(GPIOB, GPIO_Pin_0);
}
}
if (steps <= 0) {
steps += PULSE_PER_REV;
if (direction == 1) {
GPIO_ResetBits(GPIOB, GPIO_Pin_1);
} else {
GPIO_ResetBits(GPIOB, GPIO_Pin_0);
}
}
}
}
int main(void) {
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Prescaler = 7200 - 1;
TIM_TimeBaseStructure.TIM_Period = DELAY_TIME - 1;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_Cmd(TIM2, ENABLE);
while (1) {
target_speed = MAX_SPEED;
delay(5000);
target_speed = 0;
delay(5000);
direction = -direction;
}
}
```
这是一个简单的加减速控制代码,使用了定时器中断来控制步进电机的速度和位置。步进电机的控制信号通过GPIO口输出。
### 回答2:
STM32F103是一款单片机,可以用来控制各种外设,包括步进电机。控制步进电机需要编写相应的代码来实现加减速。下面是一个简单的示例代码:
首先,需要定义一些参数,包括步进电机的步数、转速、加速度和减速度等。可以根据实际情况进行调整。
然后,在主函数中初始化GPIO引脚,设置相关的输出模式和引脚状态。
接下来,编写加速函数和减速函数。加速函数可以逐渐增加电机的转速,直到达到设定的转速。减速函数则逐渐降低电机的转速,直到停止。
最后,在主循环中,调用加速函数和减速函数,控制电机的加减速过程。可以使用延时函数来控制每次加减速的时间间隔。
具体的代码如下所示:
```C
#include "stm32f10x.h"
#define PULS_PIN GPIO_Pin_0
#define DIR_PIN GPIO_Pin_1
#define MAX_SPEED 5000
#define ACCELERATION 500
#define DECELERATION 500
void delay(uint32_t count) {
for(uint32_t i = 0; i < count; i++);
}
void initGPIO() {
GPIO_InitTypeDef GPIO_InitStruct;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStruct.GPIO_Pin = PULS_PIN | DIR_PIN;
GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void accelerate() {
for(uint32_t speed = 0; speed < MAX_SPEED; speed += ACCELERATION) {
GPIO_SetBits(GPIOA, PULS_PIN);
delay(speed);
GPIO_ResetBits(GPIOA, PULS_PIN);
delay(speed);
}
}
void decelerate() {
for(uint32_t speed = MAX_SPEED; speed > 0; speed -= DECELERATION) {
GPIO_SetBits(GPIOA, PULS_PIN);
delay(speed);
GPIO_ResetBits(GPIOA, PULS_PIN);
delay(speed);
}
}
int main(void) {
initGPIO();
while(1) {
accelerate();
delay(1000); // 加速后延时1秒
decelerate();
delay(1000); // 减速后延时1秒
}
}
```
以上是一个简单的加减速控制步进电机的代码,可以根据实际需求进行修改和优化。
### 回答3:
要控制STM32F103控制的57步进电机进行加减速,我们可以使用PWM信号来控制电机的转速。以下是一个示例代码:
首先,需要定义引脚和定时器:
```c
#define STEP_PIN GPIO_Pin_0
#define STEP_PORT GPIOA
#define DIR_PIN GPIO_Pin_1
#define DIR_PORT GPIOA
#define TIMER TIM2
```
接下来,在主函数里初始化引脚和定时器:
```c
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
GPIO_InitStructure.GPIO_Pin = STEP_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(STEP_PORT, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = DIR_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(DIR_PORT, &GPIO_InitStructure);
TIM_DeInit(TIMER);
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_Period = 999; // 控制频率
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIMER, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;
TIM_OCInitStructure.TIM_Pulse = TIM_TimeBaseStructure.TIM_Period / 2; // 控制占空比,50%为停止状态
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
TIM_OC1Init(TIMER, &TIM_OCInitStructure);
TIM_CtrlPWMOutputs(TIMER, ENABLE);
TIM_Cmd(TIMER, ENABLE);
```
接下来,编写控制电机加减速的函数:
```c
void motorControl(int speed, int acceleration) {
// 设置转向
if (speed >= 0) {
GPIO_WriteBit(DIR_PORT, DIR_PIN, Bit_RESET);
} else {
GPIO_WriteBit(DIR_PORT, DIR_PIN, Bit_SET);
speed = -speed; // 转速取正数
}
// 设置占空比
int pulse = (TIM_TimeBaseStructure.TIM_Period / 1000) * speed;
TIM_SetCompare1(TIMER, pulse);
// 设置加减速
int step = acceleration;
while (step > 0) {
pulse -= step;
if (pulse < 0) {
pulse = 0;
}
TIM_SetCompare1(TIMER, pulse);
step -= acceleration;
delay(10); // 延时,用于控制加减速度
}
}
```
最后,在主循环中调用该函数来控制电机的转速:
```c
int main() {
int speed = 0; // 初始转速
int acceleration = 100; // 加减速度
while (1) {
motorControl(speed, acceleration);
delay(1000); // 延时,用于控制转速持续时间
// 反向转动
speed = -speed;
}
}
```
需要注意的是,以上代码仅为示例,具体的参数和逻辑根据实际情况进行调整。
相关推荐














