net=Net() criterion =nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(),Ir=0.001, momentum=0.9) def matplotlib_imshow(img, one_channel=False): if one_channel: img =img.mean(dim=0) img=img/2+0.5 # unnormalize npimg =img.numpy0 if one_channel: plt.imshow(npimg,cmap="Greys") else: plt.imshow(np.transpose(npimg,(1,2,0))) plt.show0 writer = SummaryWriter('./fit_logs/fashion_mnist_experiment _1') dataiter = iter(trainloader) images, labels =next(dataiter) img_grid = torchvision.utils.make_grid(images) matplotlib_ imshow(img_grid, one_channel=True) writer.add_image('four_fashion_mnist images', img_grid) writer.add_grap
时间: 2024-03-19 09:41:32 浏览: 72
利用torch.nn实现二维卷积python代码
这段代码包括模型的初始化(net=Net()),损失函数的定义(criterion=nn.CrossEntropyLoss()),优化器的定义(optimizer=optim.SGD(net.parameters(), lr=0.001, momentum=0.9)),以及用于可视化训练过程的相关函数。其中,SGD是随机梯度下降法,用于优化模型参数,lr是学习率,momentum是动量因子。make_grid函数将图像数据转换成一个图像网格,用于可视化展示,而add_image和add_graph函数则是用于将可视化结果写入TensorBoard的,方便用户进行训练过程的监控和调试。这段代码中的writer是一个SummaryWriter对象,用于管理TensorBoard的相关操作。
阅读全文