def load_data(data_path, df_path, height=480, width=640, data_range=(0, 255)): df = pd.read_excel(df_path, keep_default_na=False) Subject = df.Subject Filename = df.Filename OnsetF = df.OnsetFrame OffsetF = df.OffsetFrame
时间: 2024-04-11 14:30:02 浏览: 115
根据你提供的代码,你正在加载数据并创建一个 DataFrame 对象。在这个过程中,你从 Excel 文件中读取了数据,并将其存储在 DataFrame 中。
在你的代码中,你尝试访问 DataFrame 对象的 'OnsetFrame' 和 'OffsetFrame' 属性。然而,根据你的错误提示,DataFrame 对象似乎没有这些属性。
请确保你的 Excel 文件中包含名为 'OnsetFrame' 和 'OffsetFrame' 的列。如果列名有任何拼写错误或大小写错误,都会导致访问属性时出现 AttributeError 错误。
你可以使用 `df.columns` 属性来查看 DataFrame 中的所有列名,确保列名没有错误。另外,确保你正确地引用了这些列,例如使用正确的大小写或索引方式。
如果你的 Excel 文件中确实存在这些列,但仍然出现 AttributeError 错误,请提供更多的上下文或错误信息,以便我能够更具体地帮助你解决问题。
相关问题
并将训练模型保存在路基"C:\Users\24067\Desktop\data"下,列出完整代码
要在训练完成后将模型保存到指定路径,并列出完整的代码,可以在 `fit` 方法之后添加模型保存的代码。以下是完整的代码:
```python
import os
import json
import numpy as np
import pandas as pd
from PIL import Image
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import f1_score, accuracy_score
# 定义数据路径
TRAIN_DATA_DIR = "C:\\Users\\24067\\Desktop\\peach_split\\train"
VAL_DATA_DIR = "C:\\Users\\24067\\Desktop\\peach_split\\val"
TEST_DATA_DIR = "C:\\Users\\24067\\Desktop\\peach_split\\test"
TRAIN_LABEL_PATH = "C:\\Users\\24067\\Desktop\\train_label.json"
VAL_LABEL_PATH = "C:\\Users\\24067\\Desktop\\val_label.json"
OUTPUT_PATH = "C:\\Users\\24067\\Desktop\\data\\submission.csv"
MODEL_SAVE_PATH = "C:\\Users\\24067\\Desktop\\data\\model.h5"
# 加载数据集
def load_data(data_dir, label_path):
with open(label_path, 'r') as f:
labels_list = json.load(f)
labels = {item['文件名']: item['标签'] for item in labels_list if '文件名' in item and '标签' in item}
images = []
targets = []
for file_name, label in labels.items():
img_path = os.path.join(data_dir, file_name)
if not os.path.exists(img_path):
continue
img = Image.open(img_path).resize((128, 128))
img_array = np.array(img) / 255.0
images.append(img_array)
targets.append(label)
if len(images) == 0:
raise ValueError("No valid images found.")
return np.array(images), np.array(targets)
# 加载训练数据
train_images, train_labels = load_data(TRAIN_DATA_DIR, TRAIN_LABEL_PATH)
# 加载验证数据
val_images, val_labels = load_data(VAL_DATA_DIR, VAL_LABEL_PATH)
# 标签映射
label_map = {'特级': 3, '一级': 2, '二级': 1, '三级': 0}
train_labels = np.array([label_map[label] for label in train_labels])
val_labels = np.array([label_map[label] for label in val_labels])
# 创建模型
def create_model(input_shape=(128, 128, 3)):
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=input_shape),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.5),
Dense(4, activation='softmax')
])
return model
# 实例化模型
model = create_model()
# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# 图像增强
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
vertical_flip=True
)
# 训练模型
history = model.fit(datagen.flow(train_images, train_labels, batch_size=32), epochs=1, validation_data=(val_images, val_labels))
# 保存模型
model.save(MODEL_SAVE_PATH)
# 评估模型
def evaluate_model(model, X, y):
predictions = model.predict(X)
predicted_labels = np.argmax(predictions, axis=1)
accuracy = accuracy_score(y, predicted_labels)
f1 = f1_score(y, predicted_labels, average='weighted')
print(f'Accuracy: {accuracy:.4f}')
print(f'F1 Score: {f1:.4f}')
return accuracy, f1
evaluate_model(model, val_images, val_labels)
# 预测测试集并保存结果
def predict_and_save(test_data_dir, output_path):
test_images = []
test_file_names = []
for file_name in os.listdir(test_data_dir):
img_path = os.path.join(test_data_dir, file_name)
if not os.path.exists(img_path):
continue
img = Image.open(img_path).resize((128, 128))
img_array = np.array(img) / 255.0
test_images.append(img_array)
test_file_names.append(file_name)
test_images = np.array(test_images)
predictions = model.predict(test_images)
predicted_labels = np.argmax(predictions, axis=1)
label_map_inv = {v: k for k, v in label_map.items()}
predicted_labels = [label_map_inv[label] for label in predicted_labels]
submission_df = pd.DataFrame({'文件名': test_file_names, '标签': predicted_labels})
submission_df.to_csv(output_path, index=False)
# 进行预测并保存结果
predict_and_save(TEST_DATA_DIR, OUTPUT_PATH)
```
在这个代码中,增加了 `model.save(MODEL_SAVE_PATH)` 语句,用于在训练完成后将模型保存到指定路径 `C:\Users\24067\Desktop\data\model.h5`。
修改代码添加模型保存,并将模型保存到该路径下"C:\Users\24067\Desktop\data"
为了在训练完成后保存模型,可以在 `model.fit` 之后添加保存模型的代码。以下是修改后的代码:
```python
import os
import json
import numpy as np
import pandas as pd
from PIL import Image
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import f1_score, accuracy_score
# 定义路径常量
TRAIN_DATA_DIR = "C:\\Users\\24067\\Desktop\\peach_split\\train"
VAL_DATA_DIR = "C:\\Users\\24067\\Desktop\\peach_split\\val"
TEST_DATA_DIR = "C:\\Users\\24067\\Desktop\\peach_split\\test"
TRAIN_LABEL_PATH = "C:\\Users\\24067\\Desktop\\train_label.json"
VAL_LABEL_PATH = "C:\\Users\\24067\\Desktop\\val_label.json"
OUTPUT_PATH = "C:\\Users\\24067\\Desktop\\data\\submission.csv"
MODEL_SAVE_PATH = "C:\\Users\\24067\\Desktop\\data\\model.h5"
# 加载数据集
def load_data(data_dir, label_path):
with open(label_path, 'r') as f:
labels_list = json.load(f)
labels = {item['文件名']: item['标签'] for item in labels_list if '文件名' in item and '标签' in item}
images = []
targets = []
for file_name, label in labels.items():
img_path = os.path.join(data_dir, file_name)
if not os.path.exists(img_path):
continue
img = Image.open(img_path).resize((128, 128))
img_array = np.array(img) / 255.0
images.append(img_array)
targets.append(label)
if len(images) == 0:
raise ValueError("No valid images found.")
return np.array(images), np.array(targets)
# 加载训练集和验证集
X_train, y_train = load_data(TRAIN_DATA_DIR, TRAIN_LABEL_PATH)
X_val, y_val = load_data(VAL_DATA_DIR, VAL_LABEL_PATH)
# 标签映射
label_map = {'特级': 3, '一级': 2, '二级': 1, '三级': 0}
y_train = np.array([label_map[label] for label in y_train])
y_val = np.array([label_map[label] for label in y_val])
# 创建模型
def create_resnet_model(input_shape=(128, 128, 3)):
base_model = ResNet50(weights=None, include_top=False, input_shape=input_shape)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
predictions = Dense(4, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
return model
# 实例化模型
model = create_resnet_model()
# 编译模型
model.compile(optimizer=Adam(learning_rate=0.0001), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# 图像增强
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.15,
zoom_range=0.15,
horizontal_flip=True,
vertical_flip=True,
fill_mode='nearest'
)
# 训练模型
history = model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=50, validation_data=(X_val, y_val))
# 保存模型
model.save(MODEL_SAVE_PATH)
# 评估模型
def evaluate_model(model, X, y):
predictions = model.predict(X)
predicted_labels = np.argmax(predictions, axis=1)
accuracy = accuracy_score(y, predicted_labels)
f1 = f1_score(y, predicted_labels, average='weighted')
print(f'Accuracy: {accuracy:.4f}')
print(f'F1 Score: {f1:.4f}')
return accuracy, f1
evaluate_model(model, X_val, y_val)
# 预测测试集并保存结果
def predict_and_save(test_data_dir, output_path):
test_images = []
test_file_names = []
# 遍历测试集目录中的所有图像文件
for file_name in os.listdir(test_data_dir):
img_path = os.path.join(test_data_dir, file_name)
if not os.path.exists(img_path) or not file_name.lower().endswith(('.png', '.jpg', '.jpeg')):
continue
img = Image.open(img_path).resize((128, 128))
img_array = np.array(img) / 255.0
test_images.append(img_array)
test_file_names.append(file_name)
test_images = np.array(test_images)
predictions = model.predict(test_images)
predicted_labels = np.argmax(predictions, axis=1)
label_map_inv = {v: k for k, v in label_map.items()}
predicted_labels = [label_map_inv[label] for label in predicted_labels]
submission_df = pd.DataFrame({'文件名': test_file_names, '标签': predicted_labels})
submission_df.to_csv(output_path, index=False)
# 进行预测并保存结果
predict_and_save(TEST_DATA_DIR, OUTPUT_PATH)
```
在这段代码中,我们在训练模型后添加了 `model.save(MODEL_SAVE_PATH)` 来保存模型。模型将被保存到指定的路径 `C:\Users\24067\Desktop\data\model.h5`。
阅读全文