yolov8怎么训练coco数据集
时间: 2023-11-30 09:43:07 浏览: 699
以下是使用YOLOv8训练COCO数据集的步骤:
1.首先,需要将COCO数据集转换为YOLOv8所需的格式。可以使用以下命令将COCO数据集转换为YOLOv8格式:
```shell
python3 scripts/create_coco_tfrecord.py --image_dir /path/to/coco/images --anno_path /path/to/coco/annotations.json --output_path /path/to/output/tfrecord --classes /path/to/coco/classes.names
```
2.接下来,需要创建一个YAML文件,其中包含有关数据集和模型的信息。以下是一个示例文件:
```yaml
train: /path/to/train/tfrecord
val: /path/to/val/tfrecord
nc: 80
names: /path/to/coco/classes.names
batch_size: 16
subdivisions: 2
lr0: 0.01
lrf: 0.0005
momentum: 0.937
weight_decay: 0.0005
epochs: 100
img_size: 640
```
3.然后,可以使用以下命令在COCO数据集上训练YOLOv8模型:
```shell
!yolo train model = yolov8.pt data = coco.yaml epochs = 10 imgsz = 640
```
以上是使用YOLOv8训练COCO数据集的步骤,希望对你有所帮助。
阅读全文
相关推荐


















