求令抛物线x^2=2*p*y+c=600的p与c的值的matlab代码
时间: 2024-05-10 19:14:55 浏览: 226
以下是求解抛物线x^2=2*p*y c=600的p与c的MATLAB代码:
```matlab
syms p;
y = (x^2)/(2*p);
c = 600;
p_val = solve(c == int(y, 0, sqrt(2*p)), p);
p_val = double(p_val);
```
首先定义符号变量p,并根据抛物线方程计算y的表达式。然后使用积分函数`int`计算抛物线在x=0到x=sqrt(2*p)的长度,并将其与已知的c值相等进行求解。最后将求解得到的p值转换为双精度数`double(p_val)`。
相关问题
使用c++实现分别用 (1)基于拉格朗日插值法,利用线性插值和抛物线插值,求的近似值; (2)基于牛顿插值法(阅读课本P81-P84),利用线性插值和抛物线插值,求根号115的近似值; 要求:(a)利用程序自动选择在插值计算中所需要的节点;(b)把原始数据点以及得到的插值多项式函数曲线都绘制在MATLAB Figure里,便于观察插值效果。
以下是使用C++实现基于拉格朗日插值法和牛顿插值法的代码:
```cpp
#include <iostream>
#include <cmath>
#include <vector>
#include <fstream>
#include <cstdlib>
#include <ctime>
using namespace std;
// 拉格朗日插值法
double LagrangeInterpolation(double x, const vector<double>& X, const vector<double>& Y) {
double res = 0.0;
for (int i = 0; i < X.size(); i++) {
double Li = 1.0;
for (int j = 0; j < X.size(); j++) {
if (j == i) continue;
Li *= (x - X[j]) / (X[i] - X[j]);
}
res += Li * Y[i];
}
return res;
}
// 抛物线插值法
double ParabolicInterpolation(double x, const vector<double>& X, const vector<double>& Y) {
int n = X.size();
if (n < 3) {
cerr << "Error: Parabolic interpolation needs at least 3 data points." << endl;
exit(1);
}
int i = 0;
while (i < n - 2 && X[i+2] <= x) i++;
double x1 = X[i], x2 = X[i+1], x3 = X[i+2];
double y1 = Y[i], y2 = Y[i+1], y3 = Y[i+2];
double L1 = ((x-x2)*(x-x3))/((x1-x2)*(x1-x3)), L2 = ((x-x1)*(x-x3))/((x2-x1)*(x2-x3)), L3 = ((x-x1)*(x-x2))/((x3-x1)*(x3-x2));
return L1*y1 + L2*y2 + L3*y3;
}
// 牛顿插值法
double NewtonInterpolation(double x, const vector<double>& X, const vector<double>& Y) {
int n = X.size();
vector<double> c(n, 0.0);
c[0] = Y[0];
for (int i = 1; i < n; i++) {
for (int j = n-1; j >= i; j--) {
Y[j] = (Y[j] - Y[j-1]) / (X[j] - X[j-i]);
}
c[i] = Y[i];
}
double res = c[n-1];
for (int i = n-2; i >= 0; i--) {
res = c[i] + (x - X[i]) * res;
}
return res;
}
int main() {
// 读入数据
ifstream fin("data.txt");
vector<double> X, Y;
double x, y;
while (fin >> x >> y) {
X.push_back(x);
Y.push_back(y);
}
fin.close();
// 生成插值点
srand((unsigned)time(0));
vector<double> X_interp, Y_interp;
for (int i = 0; i < 10; i++) {
double x_interp = X[0] + (X.back() - X[0]) * rand() / RAND_MAX;
X_interp.push_back(x_interp);
Y_interp.push_back(LagrangeInterpolation(x_interp, X, Y)); // 用拉格朗日插值
if (i % 2 == 0) Y_interp.back() = ParabolicInterpolation(x_interp, X, Y); // 用抛物线插值
}
// 在MATLAB中绘制原始数据点
ofstream fout("data.m");
fout << "figure;" << endl;
fout << "hold on;" << endl;
fout << "plot(";
for (int i = 0; i < X.size(); i++) {
fout << X[i] << ",";
}
fout << Y[0];
for (int i = 1; i < Y.size(); i++) {
fout << "," << Y[i];
}
fout << ",'bo');" << endl;
// 在MATLAB中绘制拉格朗日插值曲线
fout << "x = " << X_interp[0];
for (int i = 1; i < X_interp.size(); i++) {
fout << ":" << X_interp[i];
}
fout << ";" << endl;
fout << "y = [";
for (int i = 0; i < Y_interp.size(); i++) {
fout << Y_interp[i] << ",";
}
fout << "0];" << endl;
fout << "plot(x, y, 'r-');" << endl;
// 在MATLAB中绘制牛顿插值曲线
X_interp.clear();
Y_interp.clear();
for (int i = 0; i < 10; i++) {
double x_interp = X[0] + (X.back() - X[0]) * rand() / RAND_MAX;
X_interp.push_back(x_interp);
Y_interp.push_back(NewtonInterpolation(x_interp, X, Y)); // 用牛顿插值
if (i % 2 == 0) Y_interp.back() = ParabolicInterpolation(x_interp, X, Y); // 用抛物线插值
}
fout << "x = " << X_interp[0];
for (int i = 1; i < X_interp.size(); i++) {
fout << ":" << X_interp[i];
}
fout << ";" << endl;
fout << "y = [";
for (int i = 0; i < Y_interp.size(); i++) {
fout << Y_interp[i] << ",";
}
fout << "0];" << endl;
fout << "plot(x, y, 'g-');" << endl;
fout << "hold off;" << endl;
fout.close();
return 0;
}
```
其中,数据点存储在`data.txt`文件中,每行包含一个$x$坐标和一个$y$坐标,用空格隔开。程序首先读入数据,然后生成10个插值点。对于每个插值点,程序用拉格朗日插值法和牛顿插值法分别计算近似值,如果该插值点的序号为偶数,则还用抛物线插值法计算近似值。最后,程序将原始数据点、拉格朗日插值曲线和牛顿插值曲线绘制在MATLAB Figure中,方便观察插值效果。MATLAB代码存储在`data.m`文件中,可以用MATLAB软件打开。
matlab三点确定抛物线,曲线拟合 – 如何计算抛物线的顶点给定三点
要确定三个点所确定的抛物线的顶点,可以使用以下步骤:
1. 根据三个点,列出三元一次方程组,求解得到二次项系数、一次项系数和常数项。
2. 求出抛物线的顶点坐标。抛物线的顶点坐标为 $(-b/2a, c-b^2/4a)$,其中 $a$ 是二次项系数,$b$ 是一次项系数,$c$ 是常数项。
以下是 MATLAB 代码示例:
```matlab
% 输入三个点坐标
x1 = input('x1:');
y1 = input('y1:');
x2 = input('x2:');
y2 = input('y2:');
x3 = input('x3:');
y3 = input('y3:');
% 列出三元一次方程组
A = [x1^2 x1 1; x2^2 x2 1; x3^2 x3 1];
B = [y1; y2; y3];
X = A \ B;
% 求解二次项系数、一次项系数和常数项
a = X(1);
b = X(2);
c = X(3);
% 求解顶点坐标
vx = -b / (2 * a);
vy = c - b^2 / (4 * a);
disp(['顶点坐标为:(', num2str(vx), ',', num2str(vy), ')']);
```
如果要进行曲线拟合,则可以使用 MATLAB 的 `polyfit` 函数。例如,要对一组数据进行二次曲线拟合,可以使用以下代码:
```matlab
% 输入数据
x = [1 2 3 4 5];
y = [3 6 8 10 12];
% 进行二次曲线拟合
p = polyfit(x, y, 2);
% 绘制拟合曲线
xx = linspace(min(x), max(x), 100);
yy = polyval(p, xx);
plot(x, y, 'o', xx, yy);
```
阅读全文