试编程实现标准bp算法试编程实现标准BP算法和累计BP算法,在⻄瓜数据集3.0上分别⽤这两 个算法训练⼀个单隐层⽹络,并进⾏比较。(⻄瓜数据集3.0在表4.3, P84)
时间: 2024-09-18 18:02:14 浏览: 53
分别利用RMSProp和Momentum优化算法构造BP神经网络,实现对Iris数据集的分类.zip
5星 · 资源好评率100%
标准的Back Propagation (BP) 算法是一种用于训练神经网络的监督学习方法,它通过计算梯度并反向传播误差来更新网络权重。下面是简化的Python伪代码,展示了如何使用BP算法训练一个简单的单隐藏层神经网络:
```python
import numpy as np
class SingleLayerNN:
def __init__(self, input_size, hidden_size, output_size):
self.weights1 = np.random.randn(input_size, hidden_size)
self.bias1 = np.zeros((1, hidden_size))
self.weights2 = np.random.randn(hidden_size, output_size)
self.bias2 = np.zeros((1, output_size))
# BP算法核心部分
def backprop(self, inputs, targets, learning_rate):
# Forward pass
hidden_layer = sigmoid(np.dot(inputs, self.weights1) + self.bias1)
predictions = sigmoid(np.dot(hidden_layer, self.weights2) + self.bias2)
# Error calculation
error = targets - predictions
d_weights2 = np.dot(hidden_layer.T, error * predictions * (1 - predictions))
d_bias2 = np.sum(error * predictions * (1 - predictions), axis=0, keepdims=True)
d_weights1 = np.dot(inputs.T, error * hidden_layer * (1 - hidden_layer) * np.dot(error, self.weights2.T))
d_bias1 = np.sum(error * hidden_layer * (1 - hidden_layer), axis=0, keepdims=True)
# Weight updates
self.weights2 += learning_rate * d_weights2
self.bias2 += learning_rate * d_bias2
self.weights1 += learning_rate * d_weights1
self.bias1 += learning_rate * d_bias1
# 使用西瓜数据集3.0
# ... (假设已经读取和预处理了数据)
# 初始化网络和设置学习率等参数
nn = SingleLayerNN(X_train.shape[1], hidden_size, y_train.shape[1])
learning_rate = 0.1
# 训练过程(循环迭代)
for _ in range(num_epochs):
nn.backprop(X_train, y_train, learning_rate)
# 累计BP算法(如果存在,可能会有额外的累积误差或记忆项)
cumulative_bp_network = CumulativeBPNetwork() # 类似于SingleLayerNN,但包含累积误差处理
# 使用相同的训练数据,但用CumulativeBPNetwork进行训练
cumulative_bp_network.train(X_train, y_train, learning_rate)
# 比较
print("Standard BP accuracy:", calculate_accuracy(nn, X_test, y_test))
print("Cumulative BP accuracy:", calculate_accuracy(cumulative_bp_network, X_test, y_test))
阅读全文