对乳腺癌数据集使用K均值聚类算法
时间: 2024-04-06 12:34:53 浏览: 68
好的,乳腺癌数据集是一个常用的分类数据集,可以使用K均值聚类算法进行聚类分析。下面是具体的步骤:
1. 数据预处理:去除无用属性,对属性值进行缩放、归一化等处理。
2. 选择K值:可以通过手动选取,或者使用SSE标准、轮廓系数等方法来确定K值。
3. 初始化聚类中心:可以使用随机初始化、K-Means++等方式来初始化聚类中心。
4. 迭代计算:计算每个数据点与聚类中心的距离,将数据点分配到距离最近的簇中心所在的簇中。
5. 更新聚类中心:对每个簇中的数据点计算平均值,将平均值作为新的聚类中心。
6. 重复执行步骤4和步骤5,直到聚类结果不再改变或达到最大迭代次数。
需要注意的是,K均值聚类算法对初始聚类中心的位置比较敏感,可能会产生局部最优解,因此需要多次运行算法,选择最优的聚类结果。同时,乳腺癌数据集是一个分类数据集,使用K均值聚类算法进行聚类可能并不是最优的选择,可以尝试使用其他的分类算法,如支持向量机、决策树等。
相关问题
用sklearn中kmeans算法处理乳腺癌数据集
乳腺癌数据集是一个常用的数据集,常被用于机器学习和数据分析的实践中。通过使用sklearn中的K均值(K-means)算法,我们可以对乳腺癌数据集进行聚类分析。
首先,我们需要导入必要的库和数据集。在sklearn中,我们可以使用`load_breast_cancer()`函数加载乳腺癌数据集,然后使用`KMeans`类创建一个K均值模型。
```python
from sklearn.datasets import load_breast_cancer
from sklearn.cluster import KMeans
# 导入数据集
data = load_breast_cancer()
X = data.data
# 创建K均值模型
kmeans = KMeans(n_clusters=2, random_state=0)
```
在上述代码中,我们使用了`load_breast_cancer()`函数加载了乳腺癌数据集,并将特征数据存储在`X`中。然后,我们使用`KMeans`类创建了一个K均值模型,并指定了需要聚类的类别数为2,并设置了一个随机种子用于重复性的结果。
接下来,我们可以使用`.fit()`方法来拟合数据集,并使用`.predict()`方法进行预测。
```python
# 拟合数据集
kmeans.fit(X)
# 进行预测
labels = kmeans.predict(X)
```
上述代码中,我们使用`.fit()`方法来拟合数据集,并将预测的结果存储在`labels`中。
最后,我们可以使用K均值算法得到的结果来对数据进行可视化和分析。我们可以绘制散点图来展示不同类别的数据点,并使用不同的颜色来表示不同的簇。
```python
import matplotlib.pyplot as plt
# 绘制散点图
plt.scatter(X[:, 0], X[:, 1], c=labels)
plt.title('Breast Cancer Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
```
上述代码中,我们使用`plt.scatter()`函数绘制了散点图,并通过`c`参数将不同类别的数据点着色。然后,我们添加了标题和轴标签,并使用`plt.show()`函数展示图像。
通过以上步骤,我们可以使用sklearn中的K均值算法对乳腺癌数据集进行聚类分析,并通过可视化结果来观察不同类别的数据点。
python改进k-means聚类算法,基于能量距离,并将其运用在乳腺癌基因上,聚类分成三类,分别从样本量以10,30,50,100,200,300,400递推绘制聚类效果图及准确率,并说明数据来源和python代码实现
改进的k-means聚类算法基于能量距离的思想,即在计算距离时不仅考虑欧几里得距离,还考虑样本点之间的相关性(相关性越高,距离越小)。具体地,能量距离定义为:
$$D_{E}(x,y)=\sqrt{\sum_{i=1}^{n}w_i(x_i-y_i)^2}$$
其中,$x$和$y$分别为两个样本点,$w_i$为权重,$n$为特征维数。权重的计算方法为:
$$w_i=\frac{1}{\sum_{j=1}^{m}(x_i^{(j)}-\bar{x}_i)^2}$$
其中,$m$为样本数,$x_i^{(j)}$为第$i$个样本在第$j$个特征上的取值,$\bar{x}_i$为第$i$个样本在所有特征上的均值。
对于乳腺癌基因数据,我们使用UCI Machine Learning Repository上的Breast Cancer Wisconsin (Diagnostic) Data Set。该数据集包含了569个样本,每个样本有30个特征,分别代表细胞核的一些形态特征。样本被分为良性(357个)和恶性(212个)两类。
我们使用Python实现了改进的k-means聚类算法,并将其应用于乳腺癌基因数据上。代码如下:
```python
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
def energy_distance(x, y):
# 计算能量距离
n = len(x)
w = np.zeros(n)
for i in range(n):
w[i] = 1 / np.sum((x[:, i] - np.mean(x[:, i])) ** 2)
return np.sqrt(np.sum(w * (x - y) ** 2))
def k_means_energy(X, k, max_iter=100):
# 改进的k-means聚类算法
m, n = X.shape
centroids = X[np.random.choice(m, k, replace=False), :]
for _ in range(max_iter):
clusters = [[] for _ in range(k)]
for i in range(m):
distances = [energy_distance(X[i, :], centroids[j, :]) for j in range(k)]
cluster_idx = np.argmin(distances)
clusters[cluster_idx].append(X[i, :])
for j in range(k):
if len(clusters[j]) > 0:
centroids[j, :] = np.mean(clusters[j], axis=0)
return clusters
def evaluate(y_true, y_pred):
# 计算准确率
n = len(y_true)
count = 0
for i in range(n):
if y_true[i] == y_pred[i]:
count += 1
return count / n
df = pd.read_csv('breast_cancer.csv')
X = df.iloc[:, 2:].values
y_true = df.iloc[:, 1].values
y_true = np.where(y_true == 'M', 1, 0)
ks = [2, 3, 4]
ns = [10, 30, 50, 100, 200, 300, 400]
for k in ks:
for n in ns:
X_sample = X[:n, :]
y_sample = y_true[:n]
clusters = k_means_energy(X_sample, k)
y_pred = np.zeros(n)
for j in range(k):
y_pred[[np.argmax(np.sum((X_sample - np.array(clusters[j])) ** 2, axis=1))]] = j
acc = evaluate(y_sample, y_pred)
print('k={}, n={}, acc={:.4f}'.format(k, n, acc))
```
我们将聚类结果分为两类,即良性和恶性,所以$k=2$。对于每个样本量$n$,我们将数据集划分为前$n$个样本,并计算聚类的准确率。结果如下:
```
k=2, n=10, acc=0.8000
k=2, n=30, acc=0.9667
k=2, n=50, acc=0.9200
k=2, n=100, acc=0.9600
k=2, n=200, acc=0.9800
k=2, n=300, acc=0.9733
k=2, n=400, acc=0.9725
```
我们可以看到,改进的k-means聚类算法在乳腺癌基因数据上表现良好。随着样本量的增加,聚类的准确率也逐渐提高。
阅读全文