k-svd算法代码实现
时间: 2023-11-17 09:07:13 浏览: 221
以下是 K-SVD 算法的 MATLAB 代码实现:
```matlab
function [D,X] = ksvd(Y,k,T)
% Y: 数据矩阵, d x n
% k: 字典大小
% T: 迭代次数
[d,n] = size(Y);
% 初始字典
D = normc(randn(d,k));
for t = 1:T
% 稀疏编码
X = omp(D,Y,[],'maxatoms',ceil(d/4));
% 更新字典
for j = 1:k
% 找到使用第 j 列的数据
idx = find(X(j,:));
if isempty(idx)
continue;
end
% 减去使用第 j 列的数据对应的列
E = Y(:,idx) - D*X(:,idx) + D(:,j)*X(j,idx);
% 奇异值分解
[U,S,V] = svd(E,'econ');
% 更新字典和稀疏表示
D(:,j) = U(:,1);
X(j,idx) = S(1,1)*V(:,1)';
end
end
end
```
这里调用了 MATLAB 自带的 `omp` 函数进行稀疏编码,使用了 `svd` 函数进行奇异值分解。需要注意的是,这个实现并不是最优化的,仅供参考。
相关问题
k-svd算法matlab代码
以下是一个简单的 MATLAB 实现 K-SVD 算法的代码:
```matlab
function [D,X] = ksvd(Y,D,X,iterations)
% Y: 数据矩阵, d x n
% D: 初始字典, d x k
% X: 初始稀疏表示, k x n
% iterations: 迭代次数
[d,n] = size(Y);
k = size(D,2);
for iter = 1:iterations
% 更新稀疏表示
for i = 1:n
Xi = X(:,i);
Di = D;
Di(:,Xi~=0) = 0;
residual = Y(:,i) - D*Xi;
active_idx = find(Xi~=0);
if ~isempty(active_idx)
residual = residual + D(:,active_idx)*(Xi(active_idx)*active_idx');
end
[Ci,~,~] = svds(residual,1);
Xi = zeros(k,1);
Xi(active_idx) = X(active_idx,i);
Xi(Xi~=0) = Ci;
X(:,i) = Xi;
end
% 更新字典
for j = 1:k
active_idx = find(X(j,:)~=0);
if ~isempty(active_idx)
E = Y(:,active_idx) - D*X(:,active_idx) + D(:,j)*X(j,active_idx);
[U,S,V] = svds(E,1);
D(:,j) = U;
X(j,active_idx) = S*V';
end
end
end
end
```
这里的 `svds` 函数用来计算矩阵的奇异值分解。需要注意的是,这个实现并不是最优化的,仅供参考。
k-svd算法MATLAB
### K-SVD算法在MATLAB中的实现
K-SVD是一种用于字典学习的技术,在信号处理和图像处理领域有广泛应用。为了高效地开发和测试此类算法,使用高级编程环境如MATLAB是非常合适的[^1]。
#### MATLAB中K-SVD算法的实现概述
在MATLAB环境中实现K-SVD算法可以显著减少开发时间并提高效率。下面提供了一个简化版的K-SVD算法实现:
```matlab
function [D, Z] = ksvd(X, d, nAtoms, tol, maxIter)
% X: 输入数据矩阵 (nSamples x nFeatures)
% d: 字典大小 (nAtoms x nFeatures)
% nAtoms: 原子数量
% tol: 收敛阈值
% maxIter: 最大迭代次数
[nSamples, ~] = size(X);
Z = zeros(nAtoms, nSamples); % 初始化稀疏编码矩阵
D = randn(d, nAtoms); % 随机初始化字典
for iter = 1:maxIter
% E步:固定字典 D ,更新稀疏表示 Z
for i = 1:nSamples
[~, idx] = min(sum((X(:,i)-D*Z).^2));
Z(idx,i) = 0;
A = D(:,idx)\(X(:,i)-D(:,setdiff(1:end,idx))*Z(setdiff(1:end,idx),i));
Z(:,i) = [A;zeros(nAtoms-length(A),1)];
end
% M步:固定稀疏表示 Z ,更新字典 D
for j = 1:nAtoms
Ij = find(Z(j,:) ~= 0);
if length(Ij)>0
Ej = X - D * Z + D(:,j)*Z(j,Ij)';
Dj = svds(Ej(:,Ij),1);
D(:,j) = Dj;
Z(j,Ij) = Dj'*Ej(:,Ij);
end
end
% 检查收敛条件
residual = norm(X-D*Z,'fro')^2 / prod(size(X));
fprintf('Iteration %d/%d, Residual Error=%.4e\n',iter,maxIter,residual);
if residual < tol
break;
end
end
```
此代码展示了如何通过交替最小化方法来训练自适应过完备基底(即字典)。该过程分为两个阶段——E步(期望最大化框架下的估计步骤)和M步(最大似然参数调整),这两个阶段会重复执行直到满足特定停止准则为止。
阅读全文
相关推荐
















