写一个用自适应变异粒子群法求解关于四维变量X的函数的最小值 MATLAB
时间: 2023-03-04 20:31:35 浏览: 43
MATLAB 中可以使用自适应变异粒子群法求解 X 的函数的最小值,可以利用函数 pso 来实现,例如:[x, fval] = pso(@(x)myfun(x),nvars,[-5 15],[-5 15]),其中 myfun 是求解的目标函数,nvars 是 X 的维数,[-5 15] 是 X 的最小值和最大值。
相关问题
写一个用自适应变异粒子群法求解关于四维变量X的函数的最小值的代码 MATLAB
以下是使用 MATLAB 编写的自适应变异粒子群算法求解四维变量函数最小值的代码:
```
function [xmin, fmin] = AdaptiveMutationPSO()
% 优化函数
objFunc = @(x) (x(1)^2 + x(2)^2 + x(3)^2 + x(4)^2);
% 参数设置
maxIter = 100; % 最大迭代次数
popSize = 30; % 粒子群规模
wMax = 0.9; % 惯性权重上界
wMin = 0.4; % 惯性权重下界
c1 = 2; % 自我学习因子
c2 = 2; % 社会学习因子
mu = 0.05; % 变异率
sigmaMax = 0.2; % 变异范围上界
sigmaMin = 0.001; % 变异范围下界
k = 10; % 突变邻域大小
% 初始化粒子群
pop = rand(popSize, 4); % 初始位置随机生成
vel = zeros(popSize, 4); % 初始速度为零
% 计算初始适应度
fit = zeros(popSize, 1);
for i = 1:popSize
fit(i) = objFunc(pop(i,:));
end
% 初始化个体最优位置和适应度
pBest = pop;
pBestFit = fit;
% 初始化全局最优位置和适应度
[gBestFit, gBestIndex] = min(fit);
gBest = pop(gBestIndex,:);
% 迭代
for iter = 1:maxIter
% 更新惯性权重
w = wMax - (wMax - wMin) * iter / maxIter;
% 粒子位置更新
vel = w .* vel + c1 .* rand(popSize, 4) .* (pBest - pop) + ...
c2 .* rand(popSize, 4) .* (repmat(gBest, popSize, 1) - pop);
pop = pop + vel;
% 限制粒子位置范围
for i = 1:popSize
for j = 1:4
if pop(i,j) < -10
pop(i,j) = -10;
vel(i,j) = 0;
elseif pop(i,j) > 10
pop(i,j) = 10;
vel(i,j) = 0;
end
end
end
% 计算适应度
for i = 1:popSize
fit(i) = objFunc(pop(i,:));
end
% 更新个体最优位置和适应度
for i = 1:popSize
if fit(i) < pBestFit(i)
pBest(i,:) = pop(i,:);
pBestFit(i) = fit(i);
end
end
% 更新全局最优位置和适应度
[tempFit, tempIndex] = min(fit);
if tempFit < gBestFit
gBestFit = tempFit;
gBestIndex = temp
写一个用自适应变异粒子群法求解关于四维变量X的函数的最小值的代码 MATLAB...
好的,以下是一个简单的用自适应变异粒子群算法(AMPSO)求解关于四维变量 X 的函数的最小值的 MATLAB 代码:
```matlab
function [best_value, best_position] = AMPSO(fitness_func, dim, lower_bound, upper_bound, max_iter)
% Set parameters
particle_size = 30;
w_min = 0.4;
w_max = 0.9;
c1 = 2;
c2 = 2;
r1 = rand();
r2 = rand();
max_no_improve = 10;
mutate_rate = 0.1;
% Initialize particles
particle_position = rand(particle_size, dim) .* (upper_bound - lower_bound) + lower_bound;
particle_velocity = rand(particle_size, dim) .* (upper_bound - lower_bound) * 0.05;
particle_fitness = zeros(particle_size, 1);
particle_best_position = particle_position;
particle_best_fitness = Inf(particle_size, 1);
global_best_fitness = Inf;
global_best_position = zeros(1, dim);
no_improve = 0;
% Evaluate fitness
for i = 1:particle_size
particle_fitness(i) = fitness_func(particle_position(i, :));
if particle_fitness(i) < particle_best_fitness(i)
particle_best_fitness(i) = particle_fitness(i);
particle_best_position(i, :) = particle_position(i, :);
end
if particle_fitness(i) < global_best_fitness
global_best_fitness = particle_fitness(i);
global_best_position = particle_position(i, :);
end
end
% Main loop
for iter = 1:max_iter
% Update velocity and position
w = w_max - (w_max - w_min) * iter / max_iter;
for i = 1:particle_size
r1 = rand();
r2 = rand();
if rand() < mutate_rate
particle_velocity(i, :) = rand(1, dim) .* (upper_bound - lower_bound) * 0.1;
else
particle_velocity(i, :) = w * particle_velocity(i, :) + c1 * r1 * (particle_best_position(i, :) - particle_position(i, :)) + c2 * r2 * (global_best_position - particle_position(i, :));
end
particle_position(i, :) = particle_position(i, :) + particle_velocity(i, :);
particle_position(i, :) = max(particle_position(i, :), lower_bound);
particle_position(i, :) = min(particle_position(i, :), upper_bound);
end
% Evaluate fitness
for i = 1:particle_size
particle_fitness(i) = fitness_func(particle_position(i, :));
if particle_fitness(i) < particle_best_fitness(i)
particle_best_fitness(i) = particle_fitness(i);
particle_best_position(i, :) = particle_position(i, :);
end
if particle_fitness(i) < global_best_fitness
global_best_fitness = particle_fitness(i);
global_best_position = particle_position(i, :);
no_improve = 0;
else
no_improve = no_improve + 1;
end
end
% Check for stagnation
if no_improve >= max_no_improve
% Mutate particles
for i = 1:particle_size
particle_position(i, :) = rand(1, dim) .* (upper_bound - lower_bound) + lower_bound;
particle_velocity(i, :) = rand(1, dim) .* (upper_bound - lower_bound) * 0.05;
particle_fitness(i) = fitness_func(particle_position(i, :));
if particle_fitness(i) < particle_best_fitness(i)
particle_best_fitness(i) = particle_fitness(i);
particle_best_position(i, :) = particle_position(i, :);
end
if particle_fitness(i) < global_best_fitness
global_best_fitness = particle_fitness(i);
global_best_position = particle_position(i, :);
end
end
no_improve = 0;
end
% Display progress
fprintf('Iteration %d: Best fitness value = %f\n', iter, global_best_fitness);
end
% Return best value and position
best_value = global_best_fitness;
best_position = global_best_position;
end
```
其中,参数 `fitness_func` 是要求解的函数,参数 `dim` 是变量 X 的维度,`lower_bound` 和 `upper_bound` 是 X 各维度的下界和上界,`max_iter` 是迭代次数。函数返回最小值和最小值对应的 X。
请注意,这只是一个简单的实现,可能需要根据具体问题进行调整。
阅读全文